The resurgent HIV epidemic among men having sex with men in Switzerland: a mathematical model approach

Ard van Sighem1*, Beatriz Vidondo2,3*, Tracy Glass4, Heiner Bucher4, Pietro Vernazza5, Martin Gebhardt6, Frank de Wolf7,8, Steven Derendinger9, André Jeannin9, Daniela Bezemer1, Nicola Low1, Roger Staub9, Christophe Fraser6, and the Swiss HIV Cohort Study

1These authors contributed equally; 2corresponding author (vidondo@ispm.unibe.ch); 1Stichting HIV Monitoring, Amsterdam, NL; 2Swiss Federal Office of Public Health, Bern, CH; 3Institute for Social and Preventive Medicine, University of Bern, Bern, CH; 4Basel Institute for Clinical Epidemiology and Biostatistics, University Hospital of Basel, Basel, CH; 5Division of Infectious Diseases, Cantonal Hospital St. Gallen, CH; 6Imperial College School of Medicine, London, UK; 7Institute for Social and Preventive Medicine, University of Lausanne, CH

Background
In recent years, increases in HIV diagnoses amongst men who have sex with men (MSM) have been observed in Switzerland and other high-income countries. Also, levels of unprotected anal sex have increased, as well as syphilis and gonorrhoea diagnoses.

Is HIV transmission increasing and, if so, is increasing risk behaviour the most likely explanation?

Objectives
To understand the dynamics of the HIV epidemic in MSM in Switzerland.
To examine the impact on the epidemic of changes in sexual risk behaviour, HIV testing behaviour, and use of combination antiretroviral treatment (cART).
To explore how the epidemic could develop in the future under various hypothetical scenarios.

Mathematical model
A mathematical model based on Bezemer et al. was used to describe HIV transmission amongst MSM in Switzerland. Model parameters were obtained from literature or derived from data from the Swiss HIV Cohort Study.

Changes in transmission rates (= risk behaviour), time to diagnosis, and annual number of infections needed to explain observed national data on HIV and AIDS diagnoses up to 2010 were estimated by fitting the model to these data (Figure 1).

Hypothetical scenarios
We explored 3 interventions that started in 2011 and could potentially control the epidemic (Figure 2; Table 1):

• ‘test and treat’: average time from infection to diagnosis of 1 year and subsequent viral suppression within one month after diagnosis.
• reduce sexual risk behaviour to levels attained in 1984-1995 (I) or 1996-2000 (II).
• ‘Mission Possible’ (based on a safe sex campaign in 2008): every year 3 months of safe sex in 50% of sex acts.

Figure 1: Model fits to observed HIV and AIDS diagnoses and estimated changes in number of infections, time to diagnosis, and transmission rates; dashes: 95% confidence interval; gray area: multivariate sensitivity analysis on parameter values.

Table 1: Number and percentage of infections averted compared to the 3298 new infections that would have occurred in the period 2011-2021 without any change. Ranges are based on the multivariate sensitivity analysis.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Infections Averted</th>
<th>% Averted</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘test and treat’</td>
<td>1159 (557-1969)</td>
<td>35 (19-49)</td>
</tr>
<tr>
<td>‘Mission Possible’</td>
<td>984 (850-2254)</td>
<td>30 (26-60)</td>
</tr>
<tr>
<td>reduced risk I</td>
<td>1761 (1121-3753)</td>
<td>53 (37-91)</td>
</tr>
<tr>
<td>reduced risk II</td>
<td>2545 (1929-3842)</td>
<td>77 (66-93)</td>
</tr>
</tbody>
</table>

Conclusions
The HIV epidemic amongst MSM in Switzerland has been increasing since the year 2000, predominantly due to an increase in risk behaviour.

Testing rates have increased steadily over this period but this fact alone cannot explain the steep increase in the number of new HIV diagnoses from 2000 to 2010.

A major change in risk behaviour is the most effective way to control the HIV epidemic in Swiss MSM.

Literature