Set point HIV-1 RNA concentration is higher in patients in the Netherlands in more recent calendar years

Luuk Gras¹, Suzanne Jurriaans², Margreet Bakker², Ard van Sighem¹, Daniela Bezemer¹, Christophe Fraser³, Colette Smit¹, Joep Lange², Jan M. Prins², Ben Berkhout², Frank de Wolf^{1,3}

for the ATHENA observational cohort

¹ HIV Monitoring Foundation, Amsterdam, The Netherlands; ² Academic Medical Centre of the University of Amsterdam, Amsterdam, The Netherlands; ³ Imperial College, London, UK

Background

A rising trend in plasma HIV-1 RNA concentration at set-point over calendar time might implicate an increase in the efficiency with which HIV-1 is transmitted. Contrasting results on the trend over time have been reported.

Objective

To determine whether the level of plasma HIV-1 RNA concentration and CD4 cell count measured 9-27 months after estimated HIV-1 seroconversion has changed between 1984 and 2007.

Methods

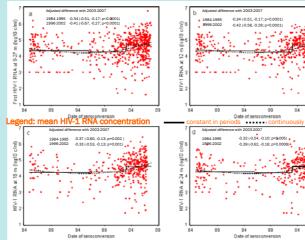
Patients

- Patients with recent HIV-1 infection (last negative and first positive test <1 year apart) and ≥1 plasma HIV-1 RNA concentration available 9-27 months after seroconversion without having received antiretroviral therapy were selected from the ATHENA observational cohort.
- Analyses were repeated in MSM from W-Europe/N-America with a proven or likely subtype B infection to obtain results in a homogenous population.
 Outcome:
- HIV-1 RNA concentration and CD4 cell count at viral set-point. Defined as:
- 1.The earliest HIV-1 RNA and CD4 cell count measurement 9-27 months after seroconversion and without having received ART.
- 2.CD4 cell count and HIV-1 RNA concentration at 12, 18 and 24 months after seroconversion.

Statistical analyses

- Linear regression models with a normal error distribution were used.
- HIV-1 RNA concentration below the lower detection limit and above the upper detection limit were interval and right censored, respectively.
- \bullet CD4 cell counts were cube root transformed, HIV-1 RNA concentration \log_{10} transformed
- Estimated calendar year of seroconversion was divided into periods: 1984-1995, 1996-2002 and 2003-2007. Potential confounders were: gender, region of origin, age at seroconversion, HIV-1 subtype, transmission of resistant virus, interval between measurement and seroconversion, transmission risk group, HCV/HBV co-infection, sensitivity and technique of the quantitative HIV-1 RNA assay used.

Results

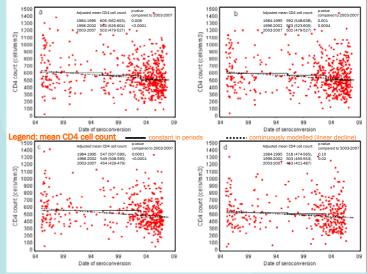

• Table 1 shows that the use of assays in the 906 included patients changed over calendar time. CD4 cell counts were available for 811 (90%) patients.

HIV-1 RNA concentration

- Mean HIV-1 RNA concentration at set-point was 0.32 log₁₀ copies/ml (95% Cl 0.12-0.51; p=0.002) lower in women compared to men, 0.40 (0.14-0.67; p=0.003) log₁₀ copies/ml lower in patients with non-B subtype infection compared to B subtype and 0.16 log₁₀ copies/ml (0.00-0.32; p=0.04) higher in patients from W-Europe/N-America compared to elsewhere.
- HIV-1 RNA concentration at viral set-point and at 12, 18 and 24 months after seroconversion was significantly higher between 2003-2007 compared to 1984-1995 and 1996-2002 (Figure 1).

Estimated serocopnversion between	1984-1995 N (%)	1996-2002 N (%)	2003-2007 N (%)
Total	163	232	511
MSM from W-Europe/N-America with proven/likely subtype B infection	114 (71)	143 (61)	355 (66)
Vale gender	144 (88)	206 (89)	480 (94)
Fransmission risk group MSM Hetero IDU Other	119 (73) 3 (2) 22 (13) 17 (11)	162 (70) 629 (21) 2 (3) 90 (5)	410 (80) 54 (11) 2 (0) 18 (4)
Subtype B non-B unknown	59 (36) 1 (1) 103 (63)	76 (33) 8 (3) 148 (64)	273 (53 32 (7 206 (40
Assay technique NASBA RT-PCR bDNA	163 (100)	53 (23) 99 (42) 66 (28)	44 (9) 266 (41) 175 (34)
Sensitivity of the assay 1000 or 400 copies/ml ≤50 copies/ml	163 (100)	104 (23) 114 (42)	42 (8) 443 (87)
Region of origin W-Europe/N-America Other	134 (82) 5 (3)	188 (81) 40 (17)	420 (82) 75 (15)
	Median (IQR)	Median (IQR)	Median (IQR)
Age (yrs)	34.4 (28-40)	33.8 (30-40)	36.4 (30-43)
Months between seroconversion and CD4 cell count measurement HIV-1 RNA measurement	10.3 (10-11) 11.6 (10-11)	10.7 (10-12) 10.9 (10-13)	10.6 (10-12) 10.9 (10-12)

Figure 1. HIV-1 RNA concentration at viral set-point in MSM from W-Europe/N-America with proven/likely subtype B infection: a) first HIV-1 RNA 9-27 months after seroconversion (n=612), b) at 12 (n=552), c) 18 (n=370), d) at 24 months (n=315).



- Results were robust for type and sensitivity of assay and co-infection with HCV or HBV.
- Mean HIV-1 RNA concentration at viral set-point in 1985 was 4.46 log₁₀ copies/ml (95% Cl 4.27-4.65), was at its lowest value 4.21 log₁₀ copies/ml (4.09-4.33) in 1995 and subsequently increased to 4.88 log₁₀ copies/ml (4.76-5.01) in 2007 (Figure 1a).

CD4 cell count

- Mean CD4 cell count at viral set-point in patients from W-Europe/N-America with sero-conversion between 2003-2007 was 507 cells/mm³ (95% CI 485-530) compared to 466 cells/mm³ (425-509, difference p=0.07) for elsewhere. No other confounders were found.
- Mean CD4 cell count at viral set-point was significantly lower in more recent calendar years and declined between 1984-2007 with 0.025 cube root cells/mm³/year (95% Cl 0.013, 0.039; p=0.0001); a decline of approximately 5 CD4 cells/mm³/year (Figure2).

Figure 2. CD4 cell count at viral set-point in MSM patients from W-Europe/N-America with proven/likely subtype B infection: a) first CD4 cell count between 9-27 months after seroconversion, b) at 12, c) at 18 and d) at 24 months.

Conclusion

There was a higher mean HIV-1 RNA plasma concentration and lower CD4 cell count at viral set-point in later calendar years in patients with recent HIV-1 infection living in the Netherlands. The higher HIV-1 RNA concentration and lower CD4 cell count could not be attributed to changes in subtype or use of assays but coincides with a higher proportion of treated HIV-1 infected patients.

