

HIV Monitoring Report

2023

Chapter 4: Viral hepatitis

4. Viral hepatitis

Anders Boyd, Colette Smit, Bart Rijnders, Mark Claassen, Janke Schinkel, Marc van der Valk

Background

Infection with hepatitis C virus (HCV) and hepatitis B virus (HBV) is generally uncommon in the Netherlands. It is estimated that 0.1% to 0.4% of the general Dutch population has evidence of exposure to HCV or HBV^{1,2}. Infection with hepatitis D virus (HDV), which requires HBV infection, is suspected to be even less common in the Netherlands and is more often found in individuals from specific, high-endemic regions (e.g., west/central Africa and eastern Europe)³. In contrast, HCV, HBV and HBV/HDV co-infections are far more prevalent in individuals living with HIV due to shared routes of transmission⁴.

Individuals with chronic HCV and HBV are at risk of developing liver fibrosis, which, in time, may lead to cirrhosis and/or result in end-stage liver disease or hepatocellular carcinoma (HCC)^{5,6}. Progression to severe liver disease takes on average 20 to 30 years in individuals with HCV or HBV, and is accelerated in the presence of other factors such as smoking, alcohol abuse, older age and the occurrence of other liver diseases such as metabolic dysfunction-associated liver disease^{7,8,9}. While progression of liver disease was faster in people living with HIV and viral hepatitis prior to the availability of combination antiretroviral therapy (ART), the rate of such progression in those with optimally-managed HIV has since become increasingly similar to that in individuals with HCV or HBV^{10,11}. Meanwhile, co-infection with HBV-HDV is known to be highly associated with severe liver-related outcomes compared to HBV mono-infection¹²; causing accelerated progression to end-stage liver disease in individuals living with HIV, despite effective ART¹³.

Infection with hepatitis A virus (HAV) and hepatitis E virus (HEV) is more frequent in the general Dutch population compared to HBV and HCV. Both HAV and HEV are transmitted by way of the intestine and can cause acute inflammatory liver disease that usually resolves without treatment 14.15. In the Netherlands, outbreaks of HAV infection are mostly observed in specific groups, such as men who have sex with men (MSM), with some onward transmission 16. Markers of previous HEV infection can be detected in roughly 10% of the general population 17. HAV and HEV infections rarely cause death in adults, yet a small minority of individuals with HEV will develop chronic infection and/or damage to tissues/organs outside the liver (such as neural gic amyotrophy, Guillain-Barresyndrome, meningoencephalitis,

glomerulonephritis, and thrombocytopenia)¹⁸. HEV infection is thought to persist and develop into chronic infection in immunocompromised individuals, who are then at increased risk of developing ongoing symptoms¹⁵.

This chapter reports on the demographic and clinical characteristics, severe chronic liver disease and mortality rates, and responses to treatment with regards to viral hepatitis infections in individuals living with HIV.

Hepatitis C virus (HCV)

Box 4.1: Definitions of hepatitis C infection.

Primary HCV infection

First documented HCV infection.

Chronic HCV infection

Individuals who remain HCV RNA-positive for longer than six months after their first known positive HCV RNA test result.

Acute HCV infection^{19,20}

- Case definition of acute HCV according to preferred criteria¹⁹:
 Positive anti-HCV IgG with a documented negative anti-HCV IgG within the
 past 12 months,
 - 01:
 - detectable HCV RNA in the presence of either a documented negative HCV RNA test, or a documented anti-HCV IgG seroconversion within the past 12 months.
- 2. Case definition of acute HCV according to alternative criteria¹⁹:

 Detectable HCV RNA in association with a rise in alanine aminotransferase
 (ALT) (above 200 IU/l) with a documented normal ALT within the past 12 months.

Spontaneously-cleared HCV infection

Individuals with a documented positive test result for HCV antibody or RNA, a subsequent negative HCV RNA test result, and without a history of medical treatment. Spontaneous clearance was distinguished as either 'definitive' (i.e., two consecutive negative HCV-RNA test results after a positive HCV antibody or RNA test result), or 'possible' (one negative HCV-RNA test result following an earlier positive HCV antibody or RNA test result).

SVR₁₂

Sustained virological response, defined as a negative HCV RNA test result 12 weeks after treatment discontinuation in individuals treated for prior documented recent or chronic HCV infection.

SVR₂4

Sustained virological response, defined as a negative HCV RNA test result 24 weeks after treatment discontinuation in individuals treated for prior documented acute or chronic HCV infection.

Hepatitis C reinfection

Detectable HCV RNA after an earlier achieved SVR12 or SVR24, or after spontaneous HCV clearance, or documentation of a new infection with a different genotype.

Severe (chronic) liver disease

Presumptive, based on clinically documented evidence of:

- bleeding from gastric or oesophageal varices, hepatic encephalopathy or hepatorenal syndrome, and/or
- chronic liver disease based on radiographically-documented or endoscopically-documented evidence of the presence of portal hypertension in terms of oesophageal varices, ascites, splenomegaly, and reversal of portal blood flow and/or cirrhosis.

Definitive if there is:

- a liver transplantation, or
- presumptive evidence, combined with a pathology, histology, or transient elastography report documenting severe liver fibrosis or cirrhosis (Metavir score F3-F4 or transient elastography stiffness ≥8kPa).

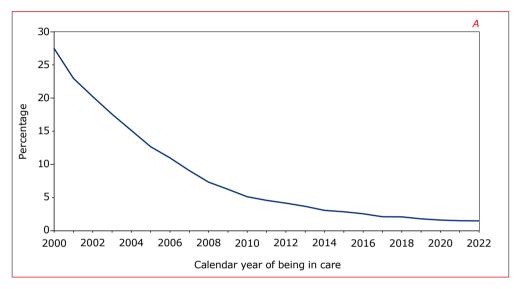
HCV screening over time

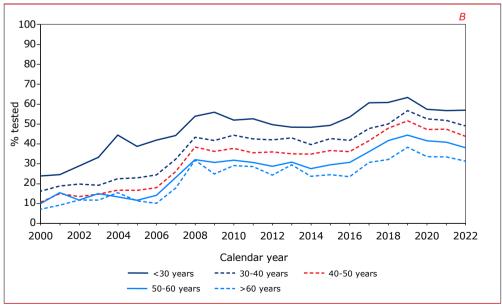
In the Netherlands the national guidelines for the treatment and monitoring of HIV recommend HCV screening during the first clinical visit after HIV diagnosis, and additional annual HCV screening for MSM who report behaviour associated with increased risk of acquiring HCV²¹. Screening for HCV among the individuals with HIV ever registered with stichting HIV monitoring (shm) has increased over calendar time. Of the 30,050^a individuals ever registered in the shm database, 96% have been screened at least once for HCV; anti-HCV or HCV RNA. In 2000, 27% of the individuals with HIV in care had never been screened for the presence of HCV infection in that

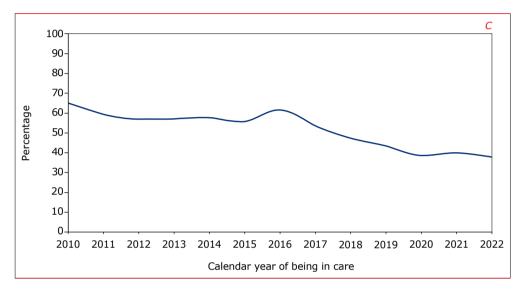
a The total number of people screened for HBV differs from the total number screened for HCV, as not all those screened for HBV are also screened for HCV.

specific calendar year. However, over time, a strong and steady increase in the percentage of individuals with a known HCV status has been observed and in 2022, only 1.5% of the individuals in care had never been screened for HCV co-infection (Figure 4.1A). In all years, including 2022, unknown HCV status was relatively more common among individuals with heterosexually-acquired HIV (2.8%), or with another or unknown mode of HIV acquisition (3.4%), and relatively less common among MSM (0.7%) and people who inject drugs (PWID) or former PWID (1.8%).

Follow-up screening


Among individuals who had a negative first HCV test and who remained in care for at least one year, 79% had a second HCV test at some point during follow up. This proportion was highest for MSM, of whom 87% had a second HCV test, and lowest for individuals who acquired HIV through heterosexual contact (63%).


As most HCV infections are observed among MSM²², the following analysis on testing frequency is reported for MSM only. Overall, the percentage of HCV seronegative MSM with at least one HCV test in a calendar year increased over time, from 13% in 2000 to 48% in 2019. However, testing frequency among HCV seronegative MSM decreased to 43% in 2021 and 40% in 2022. When testing was stratified by age, the highest percentage of testing was seen among MSM under 30 years of age, and testing decreased with increasing age (Figure 4.1B). Nevertheless, the median age for diagnosis of recent HCV was 43 years (IQR 36-50) (Table 4.2a), while in the age range 40-50 years, 44% had at least one test in 2022.


Screening for HCV RNA among those at risk of HCV reinfection is an important factor in identifying HCV reinfection. Among MSM with HIV at risk of reinfection after treatment-induced, or spontaneous clearance of HCV, the percentage of men with an HCV RNA test during a calendar year varied between 54% and 65% in 2010-16, but declined to 37% in 2020, and 38% in 2022 (Figure 4.1C). It is worth noting that these data may include MSM who are not considered at risk of HCV reinfection by their treating physician, as data on HCV-related risk-taking behaviour are not available to shm. Also of note is that repeated HCV screening among MSM at risk of HCV reinfection might be guided by a policy of targeted screening, based on the presence of incident transaminase elevations as an indicator of liver damage. This might be reflected by the observed higher proportion of repeated HCV screening among MSM with elevated transaminase levels (an increase of at least 50% compared to the last measured ALT value). In those at risk of HCV reinfection and incident transaminase elevations, the overall percentage of men with an HCV test following this elevated transaminase level was 70% in 2012-2022^b (Figure 4.1D).

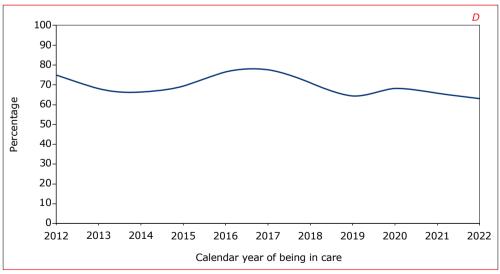

b Transaminase data became routinely available from 2012 onwards.

Figure 4.1: (A) Percentage of individuals in care with an unknown hepatitis C status per calendar year of care, (B) the percentage of men who have sex with men (MSM) who were susceptible to primary HCV infection with an HCV test, stratified by age, (C) the percentage of MSM at risk of HCV reinfection with an HCV RNA test, and (D) the percentage of MSM at risk of HCV reinfection with an HCV RNA test following an incident elevated transaminase level.

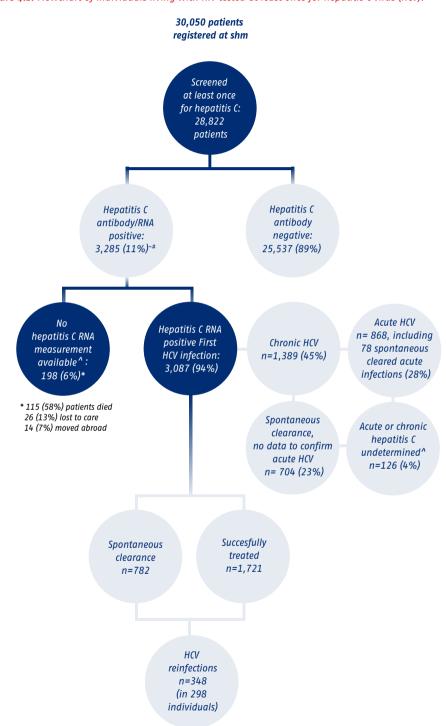
Individuals with HCV

As of May 2023, 30,050 adults (aged 15 years or older at the time of their HIV-1 diagnosis) had been registered by stichting HIV monitoring. Of those individuals, 28,822 (96%) were ever screened for HCV co-infection and had been in care at one of the HIV treatment centres: 3,285 (11%) had a positive result with an HCV antibody test and/or HCV RNA test. This confirms that HCV is far more prevalent among the population with HIV than is estimated to be the case among the general Dutch population (Figure 4.2). HCV RNA data were not documented in 198 of the 3,285 cases (6%), of whom:

- 115 have died;
- 26 have been lost to care;
- 14 have moved abroad; and
- 43 do not have a known reason for an undocumented HCV RNA outcome.

In total, 3,087 individuals were diagnosed with an HCV infection, with documented HCV RNA data for:

- 1,389 (44%) who were classified as having a chronic HCV infection at the time of their diagnosis.
- 868 (28%) who were initially diagnosed with an acute HCV infection, of whom;
 78 spontaneously cleared their infection
 - 790 became chronic HCV infections or were treated within 6 months of diagnosis.
- 704 (20%) who had evidence of spontaneous clearance of HCV but could not be classified as having an recent HCV infection at the time of their HCV diagnosis.


The remaining 126 individuals with available HCV RNA data had one positive HCV RNA test result, but no registered follow-up results, rendering it impossible to determine whether their HCV infection was acute or chronic at the time of diagnosis. This group of individuals has therefore been excluded from the analysis. The majority (n=97) of individuals with no HCV follow-up data were no longer in care in 2022. Of those still in care, 34% recently entered care in the Netherlands from Ukraine in 2022.

In total, 1,721 of the individuals with a primary HCV infection had a treatment-induced clearance of their primary HCV infection (including old and new treatment regimens). Another 782 individuals spontaneously cleared their primary HCV infection. In total, 348 HCV reinfections occurred in 298 individuals.

The majority (79%) of those with a primary infection who are not at risk of an HCV reinfection (i.e., those without SVR or spontaneous clearance of HCV) are no longer in care. The paragraph describing the continuum of HCV care gives more detail on those who remain in care, without clearance of their HCV infection.

Figure 4.2: Flowchart of individuals living with HIV tested at least once for hepatitis C virus (HCV).

 $[\]boldsymbol{\sim}$ including patients who are HCV RNA positive, but with no known HCV antibody data

[#] including documented seroconversion

[^] excluded from further analyses

Spontaneous clearance of HCV

In total, 782 individuals spontaneously cleared their HCV infection. Among the 868 individuals with primary recent hepatitis, 78 (9%) cases of spontaneous clearance were observed. Another 704 cases of spontaneous clearance were observed among individuals who could not be classified as having a primary acute infection. Compared to all individuals with HCV, those with spontaneous clearance of HCV were more likely to be female, less likely to be Dutch, and more likely to be from sub-Saharan Africa (p<0.001) (Table 4.1).

Table 4.1: Demographic characteristics of individuals with HIV/hepatitis C virus (HCV) and those who spontaneously cleared HCV registered in the shm database, 1998–2022.

	Total with HCV	Spontaneous clearance
Total number of individuals	2,961	782
Age at HCV diagnosis (median, IQR)	40 (34-47)	41 (35-48)
HCV status		
Chronic HCV	1,389	
Recent HCV without spontaneous clearance	790	
Spontaneous clearance	782	
Definitive clearance		312
Possible clearance		392
Spontaneous clearance after confirmed primary		78
recent infection		
Male gender, n (%)	2533 (86)	622 (80)
Region, n (%)		
The Netherlands	1741 (59)	374 (48)
Europe	366 (12)	93 (12)
Sub-Saharan Africa	124 (4)	64 (8)
Caribbean/South America	232 (8)	86 (11)
Southeast Asia	96 (3)	25 (3)
Other	402 (14)	140 (18)
HIV transmission route, n (%)		
Men who have sex with men	1,715 (58)	401(51)
Heterosexual	343 (12)	143 (18)
People who use/used injecting drugs	604 (20)	136 (17)
Other	299(10)	102 (13)
ART, n (%)	2874 (97)	756(97)
Deaths, n (%)	533 (18%)	118 (15)

Demographic characteristics of individuals with recent or chronic HCV at the time of HCV diagnosis

In total, 2,257 individuals could be definitively classified as having either chronic (n=1,389), or recent (n=868) HCV infection at the time of their primary HCV diagnosis. Most of these were male (81% and 99%, respectively), and the majority originated from the Netherlands (chronic: 763/1,389 [55%]; recent: 661/868 [76%]) (Table 4.2a). Fifty-seven percent of the registered individuals who acquired HIV through injecting drug use (IDU), had chronic HCV (462 of the total 812 people who use/used injecting drugs [PWID]). Among MSM (17,314), 3% (571) had chronic HCV and 5% (816) had documented recent HCV.

The HCV genotype was determined and documented in the clinical records of 1,259 of the 1,389 (91%) individuals with chronic HCV. Of the individuals with a genotype determination:

- 62% (n=776) harboured HCV genotype 1, spread across 61% (n=474) with type 1a and 14% (n=111) with type 1b. For 25% (n=191) of those with genotype 1, the subtype was not further specified.
- 5% (n=59) harboured HCV genotype 2
- 18% (222) harboured HCV genotype 3
- 16% (n=200) harboured HCV genotype 4

HCV genotype was also documented for 796 of the 868 (92%) individuals with recent HCV. They were most likely to harbour either genotype 1 (71%, n=565) or genotype 4 (21%, n=169). Of the 565 with genotype 1, 85% (n=479) harboured genotype 1a and 4% (n=24) with genotype 1b. For 11% of the people with genotype 1, the subtype was not further specified.

New HCV diagnoses in 2022

In 2022, 57 individuals were newly diagnosed with primary HCV, of whom 49 (86%) had detectable HCV RNA (table 4.2b). Eight individuals had an HCV antibody positive test result, without an HCV RNA test result at time of database closure. Of these 57 individuals with a primary HCV diagnosis in 2022, 16% were born in the Netherlands and 68% were born in Eastern or central Europe.

In terms of HIV risk group for all 57 diagnoses of primary HCV in 2022, 28% were MSM, 26% acquired HIV through heterosexual contact, 26% were PWID and 19% of the individuals had an unknown or other reported mode of HIV transmission. The modes of HCV acquisition were mostly unknown for those who acquired HIV through heterosexual contact.

All PWID with a new HCV diagnosis in 2022 migrated from Eastern or Central Europe. The HCV genotype was determined and documented for 31 of the 57 (54%) individuals with a primary HCV diagnosis in 2022. Of the individuals with a genotype determination:

- 26% (n=8) had genotype 1a,
- 16% (n=5) had genotype 1b,
- 32% (n=10) had HCV genotype 3a, and
- 26% (n=8) had HCV genotype 4d.

At time of database closure, 19 individuals were known to have started HCV treatment, predominantly with glecaprevir/pibrentasvir.

Primary HCV diagnoses and entry into care in 2022

Forty-one of the 57 individuals with a primary HCV diagnosis in 2022 newly entered into HIV care in 2022, of whom 37 (90%) had an HCV RNA positive test result. The majority were male (71%), and all individuals were born abroad, the majority of migrants arrived from Eastern and Central Europe (n=33, 80%) (table 4.2b).

Table 4.2a: Demographic characteristics of individuals with HIV/hepatitis C virus (HCV) registered in the shm database, 1998–2022.

	Total	Chronic HCV	Recent HCV
Total number of individuals screened for HCV	28,822	1,389(5)	868 (3)
Age at HCV diagnosis (median, IQR)	40 (34-47)	39 (33-45)	43 (36-50)
Male gender, n (%)	23,594 (82)	1,128 (81)	858 (99)
Region of origin, n (%)			
Netherlands	15,297(53)	763 (55)	661 (76)
Europe	1,906 (7)	210 (15)	70 (8)
Sub-Saharan Africa	3,803 (13)	50 (4)	11 (1)
Caribbean/South America	3,784 (13)	94 (7)	55 (6)
Southeast Asia	1,044 (4)	47 (3)	26 (3)
Other	2,988 (10)	225 (16)	45 (5)
HIV transmission route, n (%)			
Men who have sex with men	17,314 (60)	571 (41)	816 (94)
Heterosexual	8,381 (29)	173 (13)	31 (3)
People who use/used injecting drugs	812 (3)	462 (33)	7(1)
Other	2,315 (8)	183 (13)	14 (2)
ART, n (%)	27,971 (97)	1,333 (96)	863 (99.4)
HCV genotype (GT), n (%*)			
Total determined		1,259 (91)	796 (92)
GT 1		776 (62)	565 (71)
1a		474	479
1b		111	24
1c, 1a/b or not further specified		191	62
GT 2		59 (5)	39 (5)
GT 3		222 (18)	22 (3)
GT 4		200 (16)	169 (21)
GT 5 & 6		2 (0.1)	1 (<1)
Deaths, n (%)	3,528(12)	363 (26)	58 (7)

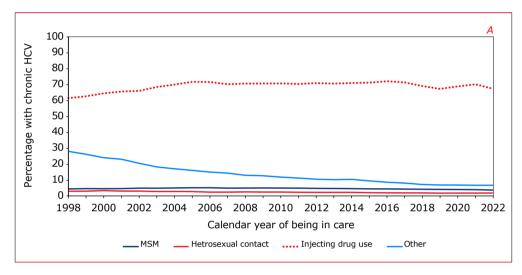
^{*}percentage of total number of individuals with an available HCV genotype.

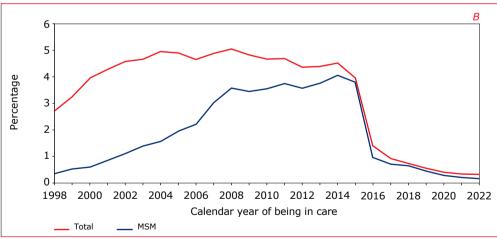
Legend: n = total for each category; (%) = percentage of the total for each column; HCV = hepatitis C virus; ART = combination antiretroviral therapy; GT = genotype.

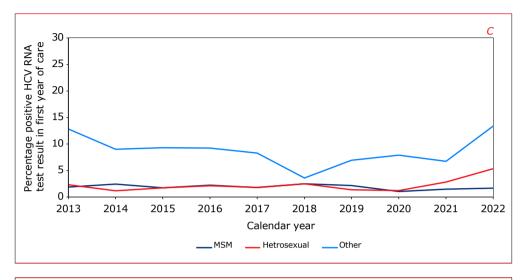
Table 4.2b: Demographic characteristics of individuals with a primary HCV diagnosis in 2022.

	Primary HCV diagnoses	Primary HCV diagnoses with
	in 2022	entry into care in 2022
Positive HCV test result	57	41
Positive HCV RNA test result	49 (86%)	37 (90%)
Acute or chronic hepatitis C undetermined		
Calendar year of entering HIV care		
Before 2022	16 (28%)	-
In 2022	41 (72%)	41
Age at HCV diagnosis (median, IQR)	44 (39-51)	41 (39-50)
Male gender, n (%)	42 (74%)	29 (71%)
Region of origin, n (%)		
The Netherlands	9 (16%)	*
Eastern & central Europe	39 (68%)	33 (80%)
Western Europe	0	0
Other	9 (16%)	8(20%%)*
HIV transmission route, n (%)		
Men who have sex with men	16 (28%)	6(15%)
Heterosexual	15 (26%)	11(27%)
People who use/used injecting drugs	15 (26%)	14 (34%)
Other or unknown	11 (19%)	10 (24%)
ART, n (%)	53 (93%)	37 (90%)
HCV genotype, n (%*)		
Total determined	31 (54%)	23 (56%)
1a	8	6
1b	5	3
3a	10	9
4d	8	5

^{*}Due to small numbers the Netherlands is included in the category other.


Legend: n = total for each category; (%) = percentage of the total for each column; HCV = hepatitis C virus; ART = combination antiretroviral therapy.


Changes over time


Prevalence of chronic HCV co-infection in individuals per calendar year

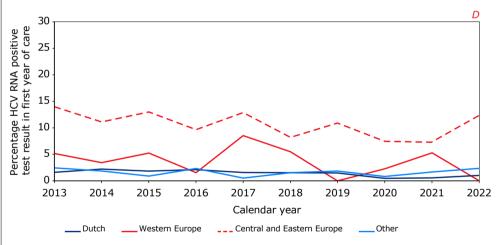

The overall prevalence of ever being diagnosed with a chronic HCV co-infection among individuals living with HIV ever registered, decreased from 11.0% in 1998 to 4.2% in 2022, but was not equally distributed among HIV transmission categories. The highest prevalence was found among individuals who had acquired HIV by injecting drug use, and this number varied between 62% and 72% over calendar years (Figure 4.3A).

Figure 4.3: Prevalence of: A) ever chronic hepatitis C virus (HCV) co-infection, and B) detectable HCV RNA, per calendar year, C) primary HCV among individuals newly entering care in the Netherlands stratified by transmission risk group (the category PWID is combined with the category other modes of HIV transmission, because the small number of PWID newly entering into care per calendar year made this group more susceptible to having larger differences in the prevalence of detectable HCV RNA), D) primary HCV among individuals newly entering care in the Netherlands stratified by region of origin.

Prevalence of individuals with detectable HCV RNA

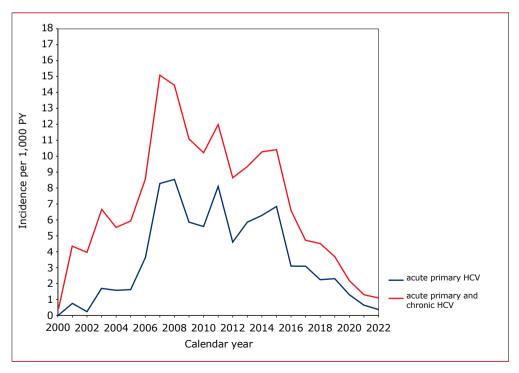
Figure 4.3B shows the percentage of individuals with a positive HCV RNA over calendar time. Individuals contributed follow-up time to the analysis if they were in care in a specific calendar year. The HCV RNA positivity was based on a last available HCV RNA test result before the end of that calendar year. The overall percentage of individuals with detectable HCV RNA varied between 2.7% in 1998 and 5.1% in 2008, before dropping to 0.3% in 2022. In MSM, the highest percentage of HCV RNA positivity was 4% in 2014; by 2022, the percentage of positive HCV RNA tests in this

group had decreased sharply to 0.16%. Figures 4.1B and 4.1C show that HCV testing frequency among individuals in care is decreasing, which could have led to an underestimation of the prevalence of individuals with detectable HCV RNA.

Prevalence of individuals newly entering into care in the Netherlands

Figures 4.3C and D show percentage of individuals with detectable HCV RNA when newly entering into HIV care in the Netherlands. The prevalence of individual with detectable HCV RNA at time of newly entering into care remained stable over the last 10 years among MSM, between 1% and 3% (Figure 4.3C). However, in the most recent years an increase in the prevalence of detectable HCV RNA was seen among individuals who acquired HIV through heterosexual contact and other modes of transmission including PWID. Stratified prevalence of detectable HCV RNA by region of origin indicated that this increase was within individuals originating from European countries other than the Netherlands, mainly Eastern & Central Europe (Figure 4.3D).

Incidence of new HCV infections over time


The incidence of primary infection is calculated for individuals with a first documented HCV infection, based on the date of their first positive HCV antibody or HCV RNA test result. This paragraph describes the incidence of recent HCV infection, including only cases of primary recent HCV infection (first diagnosis of HCV). The definition of recent HCV infection is consistent with the one given in the European AIDS Treatment Network's (NEAT) preferred criteria¹⁹. We have also expanded this definition to include alternative criteria^{19,20}. This alternative definition is based on (i) detectable HCV RNA associated with an acute rise in alanine aminotransferase (ALT) greater than five times the upper limit of normal (above 200 U/l), and (ii) a documented normal ALT within the past 12 months, together with (iii) no change in antiretroviral regimen in the last six months. As shm has only routinely collected ALT levels since 2012, incidence rates based on the alternative criteria are reported from 2012 onwards.

There were important differences in the incidence of the first diagnosis of recent HCV infection in terms of HIV transmission category. The vast majority of recent HCV infections occurred in MSM (n=816/868 [94%]). In contrast to the high prevalence of HCV in PWID or former PWID, the overall incidence of recent HCV in this group was low, occurring in only seven cases. This is probably due to the high background prevalence of HCV infection in former PWID, the fact that injecting drug use has become very uncommon in the Netherlands, and the effective harm-reduction programmes implemented in addictive care centres in the Netherlands. Thirty-one cases occurred among individuals who had acquired HIV heterosexually.

Figure 4.4 shows both the incidence of recent primary HCV infection and all primary HCV diagnoses among MSM over time. The overall rate of primary HCV infection was 6.9 per 1,000 person years (PY) (95% confidence interval [CI] 6.5-7.3). The incidence of primary infection increased from 0.28 per 1,000 PY (95% CI 0.01-1.56) in 2000 to a peak of 15.1 per 1,000 PY (95% CI 12.2-18.3) in 2007 and decreased to 1.1 per 1,000 PY (95% CI 0.6-1.9) in 2022. When looking at those with recent HCV, the overall rate of recent HCV infection among MSM was 3.7 per 1,000 PY (95% CI 3.5-4.0). When the preferred NEAT recent HCV definition was used, the incidence increased from 0 diagnoses per 1,000 PY in 2000, to a peak of 8.3 and 8.5 per 1,000 PY in 2007 and 2008, respectively. By 2015, the incidence was 6.6 diagnoses per 1,000 PY. It then declined to 3.1 per 1,000 PY in 2016, before further decreasing to 1.3 diagnoses per 1,000 PY in 2020 and 0.4 per 1,000 PY in 2022.

As expected, incidence rates among MSM were higher when the preferred and alternative case definitions of recent HCV were combined, with incidence rates of 7.7 diagnoses per 1,000 PY in 2015, 4.0 per 1,000 PY in 2016, and 0.6 per 1,000 PY in 2022.

Figure 4.4: Incidence of recent primary hepatitis C infection (blue line) and all recent primary and chronic HCV diagnoses (red line) among men who have sex with men per calendar year.

Legend: HCV = hepatitis C virus.

Treatment for HCV infection

The primary aim of HCV treatment is to achieve a sustained virological response (SVR)²³ and the treatments used have changed markedly in recent years. In the past, treatment consisted of interferon alpha (IFN alpha), and subsequently pegylated interferon alpha (PEG-IFN alpha), in combination with ribavirin (RBV) for a period of 24 or 48 weeks, depending on HCV genotype.

In April 2012, the first generation HCV NS3/4a protease inhibitors (PI) boceprevir and telaprevir (DAAs active against HCV genotype 1) became available in the Netherlands^{24,25}. These agents were subsequently used as part of triple therapy that included one of those two agents, together with PEG-IFN alpha and RBV. In 2014, the HCV NS5B polymerase inhibitor sofosbuvir was introduced in the Netherlands. Initially, due to government restrictions, sofosbuvir was only reimbursed for a defined group of individuals with severe liver fibrosis and cirrhosis. In November 2015, sofosbuvir was made available for all individuals with chronic HCV, regardless of fibrosis state. Shortly thereafter, additional novel DAAs became available. An overview of DAA-containing HCV treatment combinations currently available in the Netherlands can be found at https://hcvrichtsnoer.nl/.

Figure 4.5 shows the absolute number of individuals who have started HCV treatment per calendar year. Of the individuals ever diagnosed with primary chronic or recent HCV, or a reinfection, 1,918 have ever received HCV treatment; of those, 601 have received HCV treatment more than once (this includes people who were unsuccessfully treated and those who reacquired HCV after prior successful treatment). In total, documented regimens comprised:

- 994 regimens with (peg-) interferon+ RBV;
- 135 regimens with first generation PI; and
- 1,390 regimens with all-oral direct-acting antiviral treatment (DAAs).

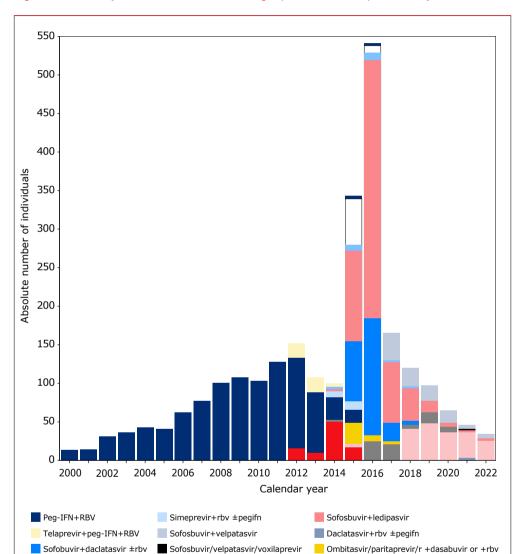


Figure 4.5: Number of individuals with HIV/HCV starting hepatitis C treatment per calendar year.

Legend: HCV=hepatitis C virus; RBV=ribavirin; PEG-IFN=pegylated interferon

Boceprevir+peg-IFN+RBV

Grazoprevir/elbasvir ±rbv

Sofosbuvir+simeprevir ±rbv

Glecaprevir/pibrentasvir

Sofosbuvir+rbv ±pegifn

Daclatasvir+sim

Treatment with IFN alpha/PEG-IFN alpha plus ribavirin and boceprevir or telaprevir

The outcome for people treated with PEG-IFN-based regimens was described in detail in shm's 2016 Monitoring Report²⁶. As these regimens have not been used since 2016, due to the availability of more novel DAAs, they are no longer included in this report.

Treatment with DAAs

In total, at the time of the database lock on 1 May 2023, 1,250 individuals were known to have started a DAA regimen between 2014 and 2023; 140 of those had been treated more than once with a DAA regimen with, in total, 1,390 treatment episodes. The most common reasons for receiving DAA treatment more than once were: reinfection after earlier DAA treatment-induced clearance (n=60), and no SVR or discontinuation of first DAA treatment episode due to a lack of early virological response (n=32), or toxicity (n=8). Of the total 1,390 DAA treatment episodes, 16 occurred in 2014, 308 in 2015, and 540 in 2016. The number of treatment episodes subsequently decreased to 33 in 2022 (Figure 4.5).

The most frequently used DAA regimens were:

- sofosbuvir plus ledipasvir +/- RBV (n=599);
- 2. sofosbuvir plus daclatasvir +/- RBV (n=263);
- 3. pibrentasvir/glecaprevir (n=188) (most commonly used regimen in 2021 and 2022);
- 4. sofosbuvir plus velpatasvir (n=106).

Treatment outcomes

HCV RNA data were collected up to 1 May 2023. At that point, 1,336 out of 1,390 treatment episodes had been completed with one of the DAA regimens, and sufficient time had elapsed since discontinuation of treatment to enable calculation of the SVR12 rate. In 1,327 treatment episodes, follow up HCV RNA data was available and for 9 there was no data after treatment discontinuation:

- In 1,295 of the 1,327 treatment episodes (98%), SVR12 was achieved.
- No SVR was achieved in 32 treatment episodes among 29 individuals.
- For the remaining 9 treatment episodes, no follow-up data on SVR were available: three people died shortly after being treated, and there were no reported HCV RNA tests available to assess treatment outcome in six of the cases.

SVR rates were comparable for individuals who received HCV treatment for the first time and those with prior HCV treatment or severe liver disease. In terms of HIV transmission risk groups, SVR rates were 98% among MSM (98%), 92% among PWID or former PWID, and 95% among individuals who acquired HIV through heterosexual contact.

Among the 29 individuals who did not achieve SVR:

- 21 were successfully retreated with another DAA regimen;
- five were not retreated, two individuals have died and one has moved abroad;
 and
- three were unsuccessfully retreated.

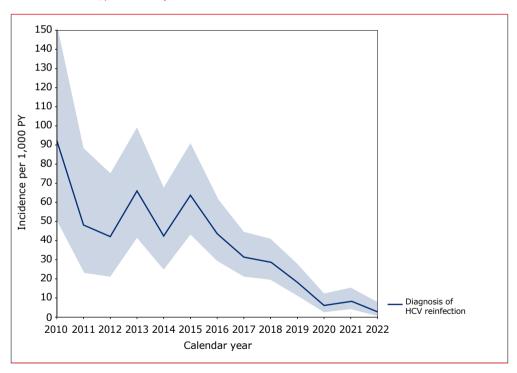
HCV reinfection

Reinfection with HCV following successful treatment or spontaneous clearance has been reported mainly in MSM living with HIV^{27,28}, with high rates of reinfection found among MSM in the Netherlands, Germany²⁹ and the United Kingdom³⁰.

To identify possible HCV reinfection among individuals who previously had HCV, we selected people who initially achieved an SVR after receiving any type of HCV treatment, and individuals with spontaneous clearance of HCV.

In total, 2,503 individuals were susceptible for HCV reinfection (1,721 after SVR, 782 after spontaneous clearance). Of those 2,503 individuals, 348 reinfections among 298 individuals (12%) were documented. The median time between SVR or spontaneous clearance and HCV reinfection was 1.4 years (IQR 0.6-3.0).

Most individuals who became reinfected were MSM (252 out of 298, or 85%). Another 29 were PWID or former PWID (10%). For the remaining 17 individuals, documented HIV transmission routes were heterosexual contact (eight), blood-blood contact (three), and unknown (six).


Of the 348 reinfections, 320 (92%) were retreated (246 with DAA, 74 with interferon+/-boceprevir/telaprevir). The median time to retreatment after reinfection diagnosis, stratified by calendar year of reinfection, was:

- Prior to 2015: 33.7 months (IQR 5.3-73.0)
- Between 2015 and 2017: 3.7 months (IQR 1.9-9.4)
- From 2018 onwards: 3.0 months (IOR 1.7-6.0)

We calculated the incidence of reinfection between 2010 and 2022. Follow-up time was from the date of SVR, date of spontaneous clearance, or from 1 January 2010 onwards, until the earliest date of HCV reinfection, death, or last known contact. The incidence of HCV reinfection for the total population was 20 reinfections per 1,000 PY (95% CI 18-22), and for MSM it was 26 reinfections per 1,000 PY (95% CI 23-30).

Because most reinfections occurred among MSM, the incidence of HCV reinfection over time is shown only for MSM (Figure 4.6). This incidence decreased from 82 reinfections per 1,000 PY in 2010 to 58 per 1,000 PY in 2015, and then declined to 18 reinfections per 1,000 PY in 2019, and 2.6 per 1,000 PY in 2022. A decline in the incidence of reinfection in MSM has been observed since 2015.

Figure 4.6: Incidence of hepatitis C reinfection after earlier treatment-induced clearance among men who have sex with men, per calendar year.

Legend: HCV = hepatitis C virus; PY = person year.

Continuum of care for those with diagnosed HCV

Figure 4.7 shows the HCV continuum of care, based on the number of people known to be in HIV care as of 31 December 2022. Individuals were categorised according to their last documented HCV infection episode. In total 2,240 individuals were linked to HIV care, 1,942 individuals had a primary HCV infection, and 298 individuals had a reinfection.

Of the 2,240 individuals linked to HIV care:

- 1,520 (68%) were retained in care;
- 720 individuals were no longer in care (415 had died; 170 had moved abroad; and 135 were lost to care);
- 1,488 (98%) of those still alive and in care had received treatment for HCV (with DAAs or a pegylated interferon-containing regimen);
- 1,449 (95%) of those still alive, in care and who had received treatment, had completed HCV treatment with enough data available to calculate the HCV treatment response (SVR12 for the DAAs and SVR24 for the older regimens).

Overall, 1,426 of the 1,449 people in care in 2022 who completed treatment (98%) had achieved an SVR, including those who had achieved an SVR on a pegylated interferon-containing regimen and those who were retreated after earlier treatment failure. Another 15 individuals with HCV reinfection had a negative last HCV RNA test result, without documentation of HCV treatment. It is likely they spontaneously cleared their HCV infection, bringing the total of individuals with a treatment-induced or spontaneous clearance of their most recent HCV episode to 1,441.

As a result, 79 (5%) of the 1,520 individuals known to be alive and in care in one of the Dutch HIV treatment centres on 31 December 2022, were still in need of HCV treatment:

32 (2%) individuals had never been treated for HCV. Those who remained untreated at the time of database closure included 5 new HCV diagnoses (16%). Half of the individuals without treatment were born in the Netherlands, and 38% were born in Western, central or eastern Europe. All except two individuals had started ART, but 27% of the individuals who started ART, had detectable HIV RNA levels. The percentage untreated was higher among PWID (5%), people who acquired HIV through heterosexual contact (5%), and people with an unknown HIV transmission mode (5%), than among MSM (1%).Of the 43 individuals for whom SVR could not yet be calculated, all had been treated with novel DAA combinations.

0

For that reason, we have extrapolated the observed DAA SVR rate for these individuals and assumed that 42 of the 43 (98%) will achieve SVR. This results in a more realistic estimate of individuals (79-42=37) who have yet to be treated or were unsuccessfully treated.

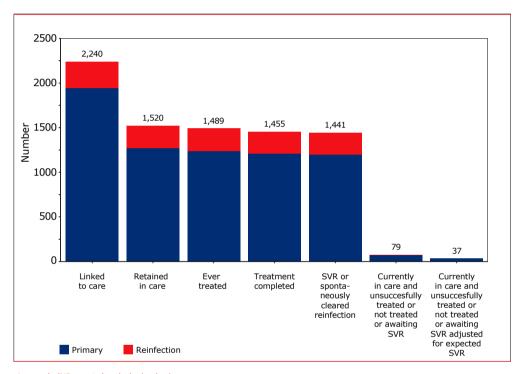
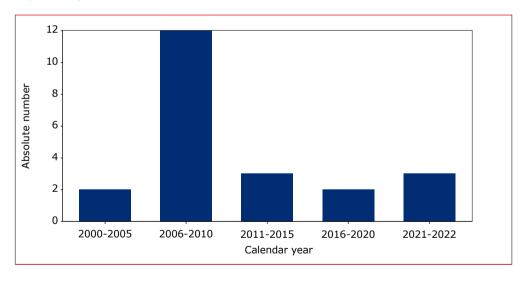


Figure 4.7: Hepatitis C continuum of care.

Legend: SVR=sustained virological response.

Liver-related morbidity

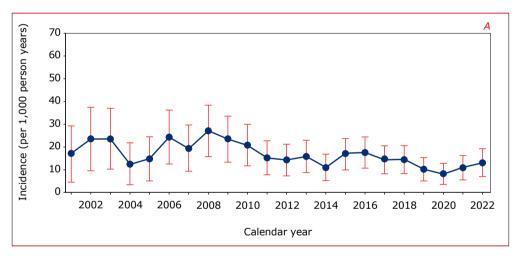

Data on liver-related morbidity are collected for all individuals living with HIV in follow up in the ATHENA cohort. In total, 1,273 cases of severe liver disease, according to our definition, were considered to be present (presumptive and definitive categories combined): 495 among individuals with HCV co-infection and 254 among individuals with HBV co-infection. This chapter reports on clinical characteristics and severe chronic liver disease with regards to HCV, HBV and HDV infection in individuals living with HIV, therefore, further analyses in this section are limited to those with viral hepatitis.

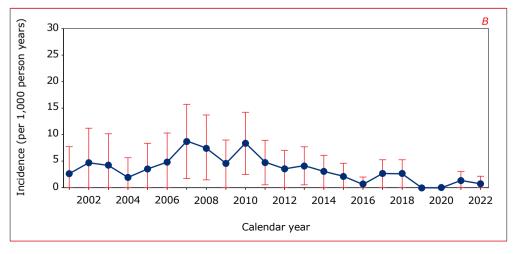
Liver-related morbidity in HCV

Additional data from liver biopsy pathology reports, transient elastography, radiology reports, or a combination of those sources were available for 1,698 of the 2,037 individuals with HCV and without other viral hepatitis (i.e., HBV or HDV). A review of these additional data shows that severe chronic liver disease was considered to be present (presumptive and definitive categories combined) in 495 (24%) of the 2,037 individuals with HCV co-infection, and 29% of those with additional liver-related data. Definitive severe chronic liver disease was documented for 122 (6%) individuals with HCV co-infection.

Between 1998 and 2022, 23 (1.1%) cases of hepatocellular carcinoma (HCC) were reported among 2,037 individuals with HCV and without other viral hepatitis (i.e., HBV or HDV). Figure 4.8 shows that the annual number of new HCC diagnoses declined from 2011 onwards. 15 of the 23 individuals with HCC were born in the Netherlands.

Figure 4.8: Absolute number of reported HCC cases among individuals with HCV and without other chronic viral hepatitis coinfections (i.e., HBV and HDV) over time.





All-cause mortality

Among the 2,037 individuals with HCV and without other viral hepatitis (i.e., HBV or HDV), 19% died from any cause. For individuals with HCV the incidence rate of death from any cause, adjusted for age and gender of the shm population, was 20.4 per 1,000 PY in 2002-11, and 13.3 per 1,000 PY from 2012 onwards (Figure 4.9A). In MSM with HCV, these incidence rates were 9.3 per 1,000 PY in 2002-11, and 5.9 per 1,000 PY from 2012 onwards. In PWID with HCV, these incidence rates were 33.8 per 1,000 PY in the period 2002-11, and 37.6 per 1,000 PY from 2012 onwards.

Figure 4.9: Annual: (A) all-cause mortality rate, and (B) mortality related to liver disease (adjusted for age and gender of the shm population) in 2,037 individuals with HIV who were ever diagnosed with recent or chronic HCV and without other viral hepatitis (i.e., HBV or HDV).

Liver-related mortality

In total, 71 (3%) individuals with HCV and without other viral hepatitis (i.e., HBV or HDV) died of a liver-related cause between 2002 and 2022. For individuals with HCV, the incidence rate of death from a liver-related cause, adjusted for age and gender of the shm population, was 5.7 per 1,000 PY in 2002-11. This decreased to 1.8 per 1,000 PY from 2012 onwards (Figure 4.9B). In MSM with HCV, these incidence rates were 3.3 per 1,000 PY in 2002-11 and 0.8 per 1,000 PY from 2012 onwards. In PWID with HCV, these incidence rates were 7.6 per 1,000 PY in 2002-11 and 4.2 per 1,000 PY from 2012 onwards.

Hepatitis B virus (HBV)

Box 4.2: Definitions of hepatitis B serological profiles.

	HBV serological results			
	HBsAg	Anti-HBs antibody	Anti-HBc antibody	
Active HBV infection*	Pos	-	-	
HBsAg-negative phase with anti-HBs	Neg/ND	Pos	Pos	
HBsAg-negative phase without anti-HBs	Neg	Neg	Pos	
Vaccinated†	Neg	Pos	Neg/ND	
Non-immune‡	Neg/ND	Neg	Neg	

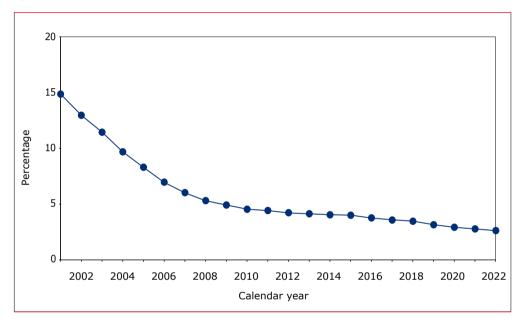
^{*}Ignoring anti-HBs antibody and anti-HBc antibody status.

†Alternative definition: HBsAg not determined (and assumed to be negative), anti-HBs antibody positive, and anti-HBc antibody negative.

‡Alternative definition: HBsAg negative, anti-HBs antibody negative, and anti-HBc antibody not determined (and assumed to be negative).

Legend: HBsAg = hepatitis B surface antigen; anti-HBs = anti-hepatitis B surface antibody; anti-HBc = anti-hepatitis B core antibody; Pos = positive; Neg = negative; HBV = hepatitis B virus; ND = not determined.

HBV screening


Ninety-seven percent of the 30,050 individuals living with HIV ever registered in the shm database have been screened for at least one serological marker of HBV, comprising:

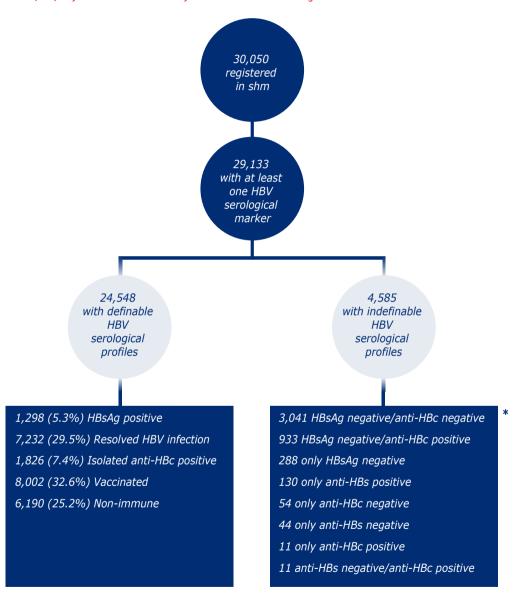
- Hepatitis B surface antigen (HBsAg)
- Anti-hepatitis B surface (anti-HBs) antibodies, and/or
- Anti-hepatitis B core (anti-HBc) antibodies

Screening for HBV infection in individuals living with HIV in care has improved over calendar time. In 2001, 15% of individuals had not been screened for HBV infection (Figure 4.10). Since then, the percentage of individuals living with

HIV without HBV screening has decreased markedly, with 2.6% of all individuals living with HIV in care having no measured HBV serological markers in 2022 (Figure 4.10).

Figure 4.10: Percentage of individuals in care without any hepatitis B virus serological test per calendar year of care.

HBV serological profiles


HBV serological profiles could be defined for 24,548 (84%) of the 29,133 screened individuals (Figure 4.10). A full HBV serological battery is not routinely performed in individuals living with HIV; therefore, any results from an HBV serological test were assumed to remain the same over time until a new serological test was carried out. The distribution of HBV serological profiles at the last visit are given in Figure 4.11.

The remaining 4,585 (16%) individuals either:

- had insufficient information to establish an HBV serological profile (n=4,512); or
- were previously HBsAg positive, no longer had anti-HBc antibodies and did not have anti-HBs antibodies (n=73)

The demographic characteristics of people with definable HBV serological profiles are compared in Table 4.3.

Figure 4.11: Flowchart of individuals living with HIV registered in the shm database with testing for hepatitis B virus (HBV). Information was obtained from the most recent serological result.

^{*}The 73 individuals who were HBsAg positive and then lost HBsAg without a definable profile are not included. **Legend:** Anti-HBc=hepatitis B core antibody; anti-HBs=hepatitis B surface antibody; HBsAg=hepatitis B surface antigen; HBV=hepatitis B virus.

Table 4.3: Demographic characteristics of individuals living with HIV in care, according to their hepatitis B virus (HBV) serological profile as registered in the shm database.

	HBV serological profile*, n (%)				
	HBV	HBsAg-negative	HBsAg-negative	Vaccinated	Non-
	infection	phase with	phase without		immune
		anti-HBs	anti-HBs		
Total number	1,298	7,232	1,826	8,002	6,190
Gender at birth					
Male	1,105 (85%)	6,217 (86%)	1,382 (76%)	6,965 (87%)	4,546 (73%)
Female	193 (15%)	1,015 (14%)	444 (24%)	1,037 (13%)	1,644 (27%)
Region of origin					
The Netherlands	533 (41%)	3,780 (52%)	691 (38%)	4,516 (56%)	3,396 (55%)
Europe	79 (6%)	498 (7%)	123 (7%)	634 (8%)	338 (5%)
Sub-Saharan Africa	328 (25%)	1,111 (15%)	578 (32%)	548 (5%)	729 (12%)
Caribbean/South America	154 (12%)	932 (13%)	168 (9%)	1,104 (15%)	923 (15%)
Southeast Asia	74 (6%)	307 (4%)	74 (4%)	263 (3%)	162 (3%)
Other	130 (10%)	604 (8%)	192 (11%)	937 (12%)	642 (10%)
HIV transmission group					
Men who have sex with men	720 (55%)	4,918 (68%)	768 (42%)	5,871 (73%)	2,807 (45%)
Heterosexual	398 (31%)	1,568 (22%)	653 (36%)	1,581 (20%)	2,691 (44%)
Injecting drug use	57 (4%)	233 (3%)	201 (11%)	71 (1%)	117 (2%)
Other	123 (9%)	513 (7%)	204 (11%)	479 (6%)	575 (9%)
ART	1,248 (96%)	7,036 (97%)	1,756 (96%)	7,889 (99%)	6,025 (97%)
Deaths	271 (21%)	1,194 (17%)	341 (19%)	447 (6%)	787 (13%)

^{*}Based on information obtained from the most recent serological result.

Legend: n = total for each category; (%) = percentage of the total for each column; HBV = hepatitis B virus; ART = combination antiretroviral therapy.

Individuals with an HBV infection

Prevalence of active HBV infection

Of the 29,133 individuals ever screened for at least one HBV serological marker, 28,778 had an HBsAg test. Of these, a total of 1,715 (6%) received a positive HBsAg test result. Over time, 215 (12%) of these individuals became HBsAg negative and acquired anti-HBs antibodies (i.e., HBsAg negative phase with anti-HBs) and an additional 202 (12%) became HBsAg negative without acquiring anti-HBs antibodies (i.e., HBsAg negative phase without anti-HBs). The remaining 1,298 (76%) individuals continued clinical care up until their last visit in care with HBsAg positive serology.

The prevalence of HBsAg positive serology was 7.8% in 2001, which slowly decreased to 3.9% in 2022 (Figure 4.12). This decline could be the result of several factors, including lower numbers of individuals with incident HBV (as a result of increased vaccination coverage among MSM³¹, and the preventive effect of HIV treatment with an ART regimen that includes tenofovir disoproxil fumarate [TDF] / tenofovir alafenamide fumarate [TAF]), and a minority of individuals becoming HBsAg negative during treatment³².

As is the case for HCV co-infection, the percentage of individuals living with HIV in care who have chronic HBV is considerably higher than that found in the general Dutch population. Individuals with HBV were predominantly male (1,105 out of a total 1,298, or 85%), in line with those with HCV (Table 4.3). However, compared with people with HCV, those with HBV were more likely to have been born in sub-Saharan Africa and to have acquired HIV through heterosexual contact.

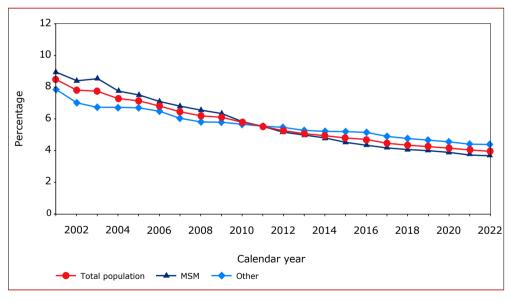


Figure 4.12: Prevalence of HBsAg positive serology per calendar year.

Legend: MSM = men who have sex with men; HBsAg = hepatitis B surface antigen.

Treatment for chronic HBV infection

The treatment for chronic HBV infection aims to reduce viral replication of HBV. As HBV DNA is the parameter most directly influenced by therapy with either nucleoside or nucleotide analogues, HBV DNA undetectability is an appropriate surrogate marker for treatment response. Persistent lowering of HBV DNA levels has also been shown to reduce the risk of HCC and overall mortality in individuals with HIV and HBV^{33,34}. A few antiviral agents used for treatment of HIV, such as lamivudine, and particularly TDF/TAF, are also active against HBV.

Of the 1,715 individuals with HIV in the shm database who have ever had an HBsAg positive serological test result, 1,650 (96%) ever received an ART regimen that included one or more agents with activity against both HIV and HBV. The reasons the remaining 63 individuals never received anti-HBV treatment included:

- death prior to start of treatment (n=16);
- recent entry into care (n=4);
- loss to follow up (n=43); or
- lack of sufficient information (n=2).

Most people with active HBV received treatment containing lamivudine in 2001 (Figure 4.13). TDF-based ART (with or without lamivudine or emtricitabine) for combined HIV and HBV treatment was first used in 2002 (n=84/646, 13%) and became more commonly used than lamivudine in 2004. TAF-based ART (with or without lamivudine or emtricitabine) was first used in 2016 (n=135/1,245, 11%).

In 2022, most individuals with HBV were receiving TAF-based ART (n=609/1,331,46%), closely followed by TDF-based ART (n=504/1,331,38%), and lamivudine-based ART (n=151/1,331,11%), or no anti-HBV-containing ART (n=67/1,331,5%). Of the 67 individuals who were not on an anti-HBV containing ART, 28 (41%) no longer had HBsAg positive serology.

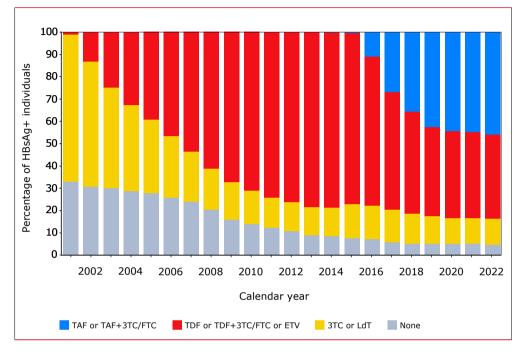
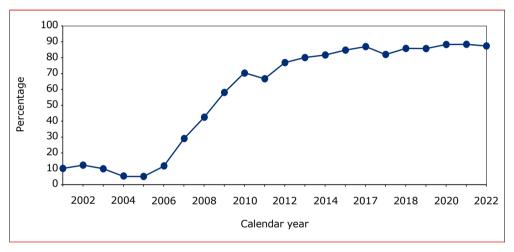


Figure 4.13: Anti-hepatitis B virus (HBV)-containing antiretroviral therapy per calendar year.

Legend: TAF = tenofovir alafenamide; TDF = tenofovir disoproxil fumarate; ETV = entecavir; 3TC = lamivudine; LdT = telbuvidine; FTC = emtricitabine; HBsAg+ = hepatitis B surface antigen positive.

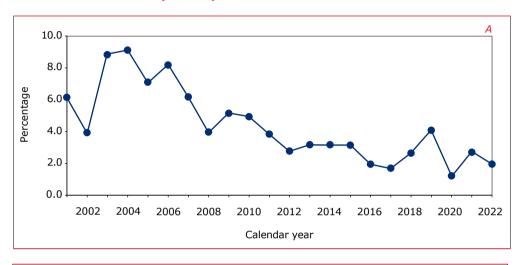

Note: The categories of anti–HBV agents were: none, 3TC or LdT, TDF or TDF+3TC/FTC or ETV, and TAF or TAF+3TC/FTC. 3TC and LdT should not be combined and TDF and ETV can be combined under special circumstances³⁵.

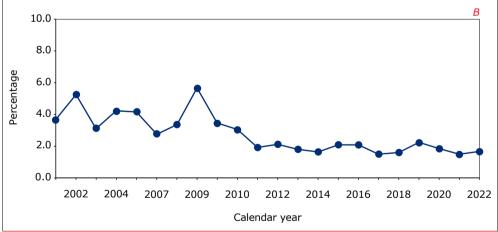
We examined the HBV DNA levels per calendar year in the population of individuals with HIV and HBV. In many treatment centres, HBV DNA is not routinely collected after the first negative HBV DNA result during treatment with TDF/TAF, so long as HIV RNA is undetectable. HBV DNA measurements were then available, on average, in 24% of individuals with HBV for each year.

Figure 4.14 shows the percentage of those over time with an undetectable HBV DNA level below 20 IU/ml, as a percentage of the total number of individuals with an HBV DNA measurement. For HBV DNA measurements with a detection limit other than 20 IU/ml, we used the detection limit of the specific assay (below 20, below 100, below 200, below 400, below 1,000, or below 2,000 IU/ml).

In 2001-2005, at most, 12% of the individuals had an undetectable HBV DNA level based on the detection limit of the assay used at the time of measurement. The percentage of individuals with an undetectable HBV DNA level became more common with increased use of TDF-containing ART, reaching 80% in 2013. In 2022, 87% of individuals with HIV and HBV had an undetectable HBV DNA level (Figure 4.14).

Figure 4.14: Percentage of individuals with undetectable hepatitis B virus (HBV) DNA levels by assay, with a detection limit of <20, <100, <200, <400, <1,000, or <2,000 IU/ml HBV DNA per calendar year, regardless of HBeAg status.




There are other serological outcomes associated with a more favourable prognosis in individuals with HBV³⁶. Persistently negative hepatitis B "e" antigen (HBeAg) is associated with lower levels of HBV DNA replication. It also confers a favourable long-term outcome with low risk of cirrhosis and HCC, so long as transaminase and HBV DNA levels are low³⁷. In those individuals with HBeAg-positive status, the loss of HBeAg, known as HBeAg seroclearance, is therefore a desired endpoint. Persistently negative HBsAg is associated with reduced viral activity, very low risk of developing HCC, and improved survival. For all individuals with HBV, the loss of HBsAg, known as HBsAg seroclearance or "functional" cure, is the penultimate goal of HBV therapy.

We examined the rates of HBeAg and functional cure per calendar year in the population of individuals with HIV and HBV. For these analyses, any results from an HBV serological test were assumed to remain the same over time until a new serological test was carried out. The percentage of individuals with HBeAg seroclearance ranged from 3.9% to 9.1% between 2001 and 2010, and slowly declined to 2.0% in 2022 (Figure 4.15A). Similarly, the percentage of individuals with HBsAg seroclearance was higher between 2001 and 2010, ranging from 2.8% to 5.7%, and slowly declined to 1.6% in 2022 (Figure 4.15B).

Individuals with HIV and HBV who initiate ART at very low CD4+ cell counts, are more likely to have seroclearance due to an immuno-inflammatory reaction with accelerated CD4+ cell increases³⁸. The higher percentages with seroclearance before 2010 could be due, in part, to the higher percentage of individuals with HIV and HBV initiating ART with severe immunosuppression during this period. It could also be due to the decrease in the number of individuals with recent HBV infection, who were more likely to clear their HBsAg, as TDF-containing ART became more widespread³². Furthermore, the number of HBeAg tests peaked in 2004 at 116, before slowly declining to 26 tests in 2022. The number of HBsAg tests peaked in 2008 at 230, before decreasing less dramatically to reach 125 tests in 2022. The lower percentage with seroclearance after 2010 might also be due to the lower testing rates in individuals with HIV and HBV.

Figure 4.15: (A) Percentage of hepatitis B "e" positive (HBeAg) individuals with HIV and HBV having HBeAg seroclearance, and (B) percentage of all individuals with HIV and HBV having hepatitis B surface antigen seroclearance. Both are shown by calendar year.

HBV vaccination in individuals living with HIV

Of the 24,548 individuals with definable HBV serological profiles, 8,002 (33%) had serological evidence of HBV vaccination status at their last visit. HBV vaccination is not recommended for individuals with HBsAg positive and/or anti-HBc antibody positive serology. When individuals with negative HBsAg and anti-HBc antibody serology (without previous evidence of HBsAg positive serology) were

considered, the prevalence of HBV vaccination status increased from 8% in 2001 to 44% in 2022 (Figure 4.16). The largest increase in HBV vaccination was observed in MSM, likely due to the national vaccination campaign targeting these individuals from 2002 onwards³¹.

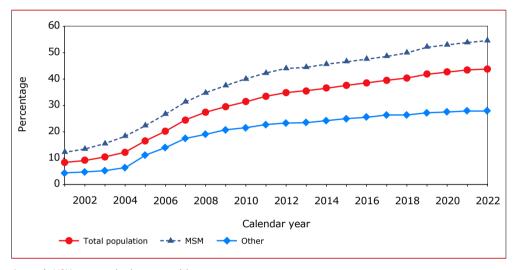
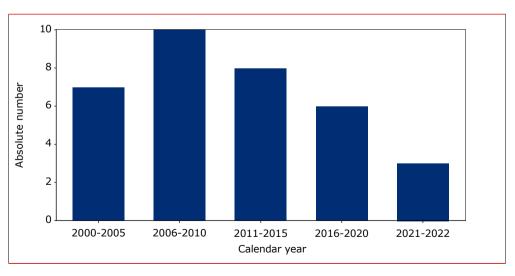


Figure 4.16: Prevalence of hepatitis B vaccination per calendar year.

Legend: MSM = men who have sex with men.

HBV non-immune status in individuals living with HIV

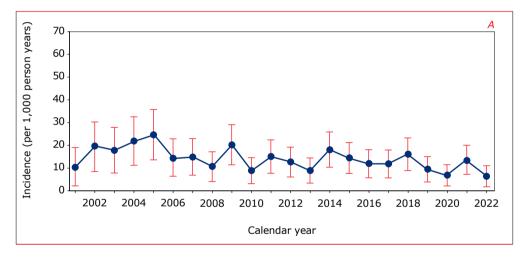
Of the 24,548 individuals with definable HBV serological profiles, 6,190 (25%) had serological evidence of being non-immune and non-exposed to HBV at their last visit. When the 4,585 individuals with undefinable HBV serological profiles were considered, 84 of the 256 with an anti-HBs antibody test did not have detectable anti-HBs antibodies, and 3,776 of the 4,329 without an anti-HBs antibody test were not reported to have been vaccinated by their treating physician. Therefore, at most, 10,050 (34%) of the 29,133 individuals screened for HBV remained susceptible to infection at the time of their last visit (6,190 non-immune; 84 with an undefinable HBV profile and anti-HBs antibody negative; and 3,776 with an undefinable HBV profile and missing data on anti-HBs antibody status, and no physician-reported vaccination).

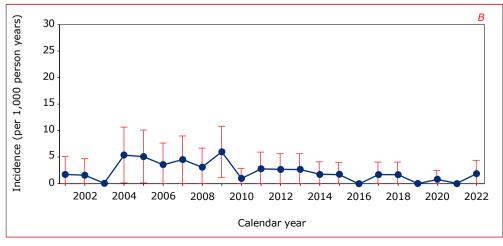

Individuals at risk, and MSM in particular, should be actively counselled about HBV vaccination. However, they may be protected from HBV infection by the use of tenofovir (TDF), or tenofovir alafenamide (TAF), as part of their ART regimen, according to findings reported by an international study, and one of the Dutch HIV treatment centres^{39,40}. Data from shm show that, of those people who remained at risk of acquiring HBV, 83% were being treated with an ART regimen that included TDF or TAF; for MSM, this percentage was 85%.

Liver-related morbidity

Additional data from liver biopsy pathology reports, transient elastography, radiology reports, or a combination of those sources, were available for 1,273 of the 1,573 individuals with HBV and without other viral hepatitis (i.e., HCV or HDV). A review of these additional data shows that severe chronic liver disease, according to our definition, was considered to be present (presumptive and definitive categories combined) in 254 (16%) of the 1573 individuals with HBV. Definitive severe chronic liver disease was documented for 70 (4%) with HBV.

Figure 4.17 shows that the annual number of new HCC diagnoses declined from 2011 onwards. HCC was found in 34 (2.2%) individuals with HBV co-infection, 18 of whom were born in the Netherlands.




Mortality

All-cause mortality

Nineteen percent (n=300) of the 1,573 individuals with HBV and without other viral hepatitis (i.e., HCV or HDV) died of any cause. For individuals with an HBV infection the incidence rate of death from any cause, adjusted for age and gender of the shm population, was 16.3 per 1,000 PY in 2002-11, and 11.8 per 1,000 PY from 2012 onwards (Figure 4.18A). In MSM with HBV, these incidence rates were 13.3 per 1,000 PY in 2002-11 and 10.1 per 1,000 PY from 2012 onwards. In PWID with HBV, these incidence rates were 67.7 per 1,000 PY in 2002-11 and 88.0 per 1,000 PY from 2012 onwards.

Figure 4.18: Annual: (A) all-cause mortality rate, and (B) mortality related to liver disease (adjusted for age and gender of the shm population), in 1,573 individuals with HIV who were ever diagnosed with active HBV and without other viral hepatitis (i.e., HCV or HDV).

Liver-related mortality

In total, 35 individuals with HBV and without other viral hepatitis (i.e., HCV or HDV) died of a liver-related cause. For individuals with an HBV infection, the incidence rate of liver-related death, adjusted for age and gender of the shm population, was 3.4 per 1,000 PY in 2002-11 and decreased to 1.3 per 1,000 PY from 2012 onwards (Figure 4.18B). In MSM with HBV, these incidence rates were 3.2 per 1,000 PY in 2002-11 and 1.3 per 1,000 PY from 2012 onwards. In PWID with HBV only, these incidence rates were 10.7 per 1,000 PY in 2002-11 and 9.1 per 1,000 PY from 2012 onwards.

Multiple infections with HBV, HCV and HDV

Prevalence of individuals with HBV-HCV, HBV-HDV and HBV-HCV-HDV

Of the 30,050 individuals living with HIV ever registered by shm, 29,414 (98%) had been screened for HBV (i.e., HBsAg), HCV (i.e., anti-HCV antibodies) or HDV (i.e., IgG or IgM anti-HDV antibodies or presence of HDV RNA). Of those with HIV ever registered by 2022, there were:

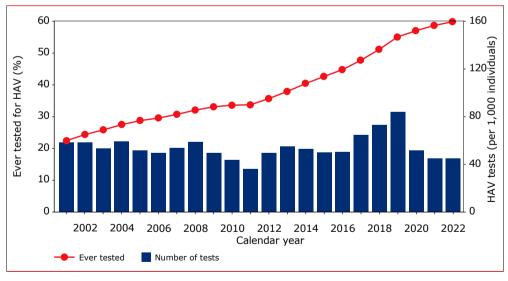
- 225 (0.8%) individuals who ever had HBV-HCV;
- 16 (0.1%) individuals who ever had HBV-HDV; and
- 10 (<0.1%) individuals with HBV-HCV-HDV.

It should be noted that by 2022:

- 235 of the 1,715 (14%) individuals who ever had HBV had been tested for HDV;
- 26 (11%) of the 235 testing positive for HDV antibodies had an indication of past or current HDV infection;
- 15 of the 26 were tested for HDV RNA; and
- 11 of these were found to have detectable HDV RNA, indicating active HDV.

Morbidity and mortality in individuals with HBV-HCV, HBV-HDV and HBV-HCV-HDV Of the 251 individuals with multiple viral hepatitis, 70 (28%) had presumptive or definitive severe chronic liver disease: 58 with HBV-HCV, three with HBV-HDV and seven with HBV-HCV-HDV.

HCC was found in 6 (2%) individuals with multiple viral hepatitis: 5 with HBV-HCV, one with HBV-HDV and none with HBV-HCV-HDV. In the individuals with multiple viral hepatitis, 77 deaths were observed, of which 14 (18%) were liver-related. The number of overall and liver-related deaths, respectively, were distributed across co-infection groups as follows: 72 and 13 with HBV-HCV, one and one with HBV-HDV and four and none with HBV-HCV-HDV.


Hepatitis A virus (HAV)

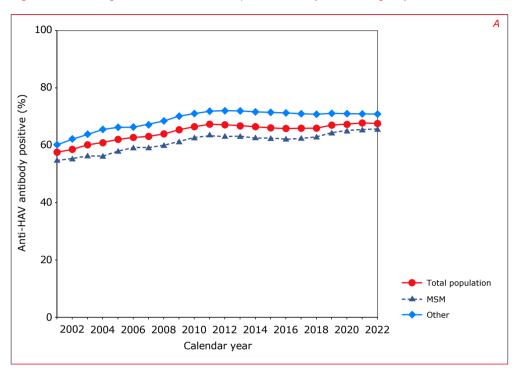
HAV screening

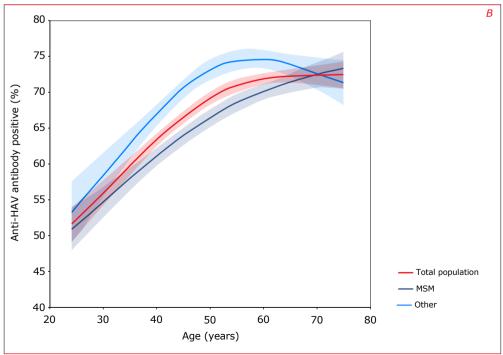
Screening for HAV involves testing for IgG anti-HAV antibodies (to establish past or current HAV infection, or HAV vaccination response) and/or IgM anti-HAV antibodies (to establish acute HAV infection). Sixty-one percent (n=18,302) of the 30,050 individuals living with HIV ever registered in the shm database have been screened for HAV. The frequency of screening for HAV in individuals living with HIV has been consistent over the past two decades (Figure 4.19).

Between 2001 and 2017, roughly 35 to 63 HAV tests per 1,000 individuals were conducted each year. Between 2018 and 2019, screening frequency increased to 72 and 83 HAV tests per 1,000 individuals per year, respectively. In 2020, screening frequency returned to 52 HAV tests per 1,000 individuals and was 44 HAV tests per 1,000 individuals in 2022. The percentage of individuals who have ever been tested for HAV was 23% in 2001, and steadily increased to 61% in 2022 (Figure 4.19).

Figure 4.19: Percentage ever tested for anti-HAV antibodies and anti-HAV antibody testing frequency, per calendar year.

Legend: HAV = hepatitis A virus.


HAV seropositivity


Of the 18,302 individuals ever screened for HAV, a total of 12,353 (68%) had a positive anti-HAV antibody test result:

- 66% were observed in MSM;
- 66% in PWID;
- 73% in heterosexuals; and
- 66% in people from other transmission groups.

The prevalence of anti-HAV antibody positivity was 57% in 2001 and then slowly increased to 67% in 2022 (Figure 4.20A). For MSM, the prevalence of anti-HAV antibody positivity was 55% in 2001, and it also slowly increased, reaching 66% in 2022. For all other transmission groups, the prevalence of anti-HAV antibody positivity was 60% in 2001 and 71% in 2022.

Legend: HAV = hepatitis A virus, MSM = men who have sex with men.

Epidemiological studies have highlighted the strong relationship between increasing anti-HAV antibody positivity and increasing age⁴¹. This age-dependent relationship was also observed in the 18,302 individuals ever screened for HAV (Figure 4.20B). Overall, anti-HAV antibody positivity was 58% for individuals below the age of 40, and 70% for those aged 40 and above. For MSM, anti-HAV antibody positivity was 57% for individuals below the age of 40, and 68% for those aged 40 and above. For all other transmission categories, anti-HAV antibody seropositivity was 60% for individuals below the age of 40, and 73% for those aged 40 and above.

Individuals with acute HAV diagnoses

Diagnoses of acute HAV infection were determined as either presumed (i.e., reported in the clinical file), or confirmed (i.e., detection of IgM anti-HAV antibodies or HAV RNA). Among the individuals who were in care between 2001 and 2021, there were 108 reported cases of acute HAV infection (n=69, presumed; n=39, confirmed), of which 86 (80%) were observed in MSM, 14 (13%) in heterosexuals, and 8 (7%) in those with other transmission categories.

Cases of acute HAV were first documented in 2001, and the number of acute HAV cases were lower than five per year until 2017, when 44 cases of acute HAV infection were documented (n=25, presumed; n=19, confirmed) (Figure 4.21). This figure decreased to 18 in 2018 and 13 in 2019. Of the 77 documented cases occurring between 2017 and 2019, 66 (86%) were observed in MSM. This increase in HAV infections was part of a European-wide outbreak of HAV among sexually-active MSM in 2017⁴². In 2022, there was only one case of acute HAV infection.

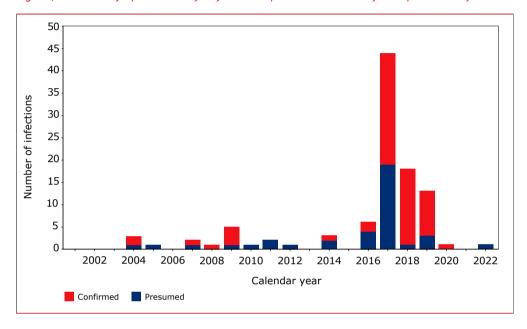


Figure 4.21: Number of reported cases of confirmed and presumed acute HAV infection per calendar year.

Of the 108 reported cases of acute HAV infection, 58 (54%) were recorded to have severe clinical symptoms. Severe chronic liver disease, according to our definition, was considered to be present (presumptive and definitive categories combined) in 18 (17%) of those with a reported acute HAV infection. Definitive severe chronic liver disease was documented for three (3%) with a reported HAV infection. No deaths due to acute HAV infection were reported.

HAV vaccination in individuals living with HIV

Information on HAV vaccination status was obtained from clinical files and was unknown for the majority of individuals ever registered by shm. Of the 30,050 individuals living with HIV ever registered in the shm database, 2,219 (7%) had received at least one HAV vaccination, according to their clinical file. The Netherlands has recommended HAV vaccination for any individual at risk of acquiring HAV infection (e.g., travellers to high-HAV endemic regions, professionals with potential exposure to HAV, and people with chronic hepatitis B or C)⁴³. HAV vaccination frequency was consistently lower than or equal to three vaccinations per 1,000 individuals living with HIV from 2001 to 2016. It increased substantially to ten and 12 vaccinations per 1,000 individuals in 2017 and 2018, respectively (Figure 4.22). Accordingly, the percentage reported to have ever received an HAV vaccination was 0.9% in 2001, 3.8% in 2016, and 7.4% in 2022. In MSM, this percentage was 1.0% in 2001, 4.9% in 2016, and 10.0% in 2022.

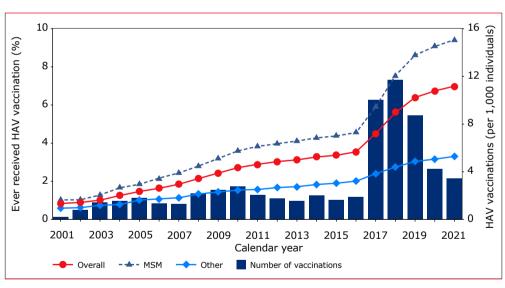
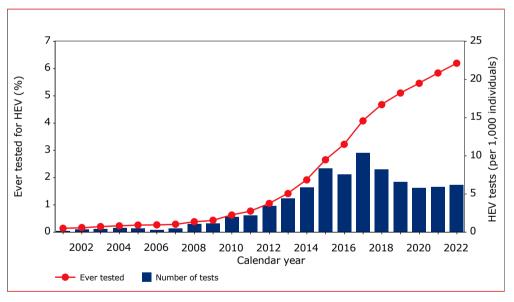


Figure 4.22: Percentage that ever received an HAV vaccination and HAV vaccination frequency per calendar year.

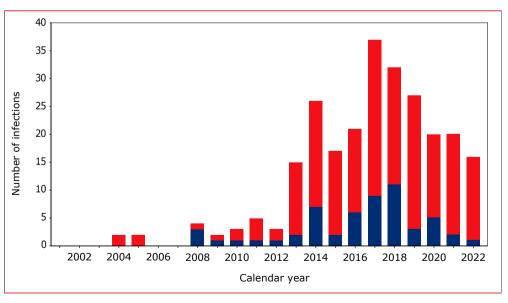

Legend: HAV = hepatitis A virus; MSM = men who have sex with men.

Hepatitis E virus (HEV)

HEV screening and seropositivity

Screening for HEV involves testing for IgG anti-HEV antibodies or HEV antigen (to establish past or current infection), or a combination of HEV RNA and/or IgM anti-HEV antibodies (to establish acute HEV infection). Six percent of the 30,050 individuals living with HIV ever registered in the shm database have been screened for HEV. The screening frequency for HEV infection in individuals living with HIV in care was low between 2001 and 2010, reaching a maximum of two tests per 1,000 individuals (Figure 4.23). HEV testing frequency rapidly increased from two tests per 1,000 individuals in 2011 to 10 tests per 1,000 individuals in 2017. In 2022, this frequency was six tests per 1,000 individuals.

Figure 4.23: Percentage ever tested for anti-HEV antibodies and anti-HEV antibody testing frequency per calendar year.


Legend: HEV = hepatitis E virus.

Of the 1,852 individuals who were in care between 2001 and 2022, and who were ever screened for HEV, 252 (14%) were newly diagnosed as having past or current HEV infection. Of these individuals, 162 (64%) were MSM, 59 (23%) heterosexuals, six (2%) PWID, and 25 (10%) were from other transmission groups. The largest number of new diagnoses were observed between 2013 and 2020 (Figure 4.24), mainly due to the higher frequency of HEV testing among individuals living with HIV. The percentage of individuals newly diagnosed with past or current HEV infection ranged from 9% in 2004 to 14% in 2022 (Figure 4.25).

Of all individuals tested for HEV and in care between 2001 and 2022, there were 55 individuals diagnosed with acute HEV infection, of whom 40 were MSM and 9 heterosexuals. Only two of these cases were confirmed to have progressed to chronic infection (i.e., positive HEV RNA lasting more than three months). One of these individuals was treated with ribavirin and both were able to resolve their infection (i.e., achieve undetectable HEV RNA after chronic infection had been established).

Figure 4.24: Number of individuals newly identified with past or current HEV infection and with acute HEV infection per calendar year. Blue bars represent the percentage of newly-identified HEV infections that were confirmed as acute HEV infections.

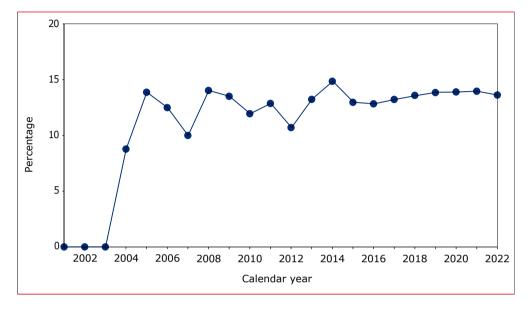


Figure 4.25: Percentage ever infected with HEV per calendar year.

Data on liver-related morbidity and mortality, and extra-hepatic complications associated with HEV infection, are not collected in the shm database.

Conclusions

Five percent of individuals living with HIV ever registered between 1998 and 2022 in the shm database, have been documented as having chronic HCV at some stage, and 3% have been documented as having had a recent HCV infection. Acute HCV infection occurred more often among MSM (5%), while reinfection of HCV was documented in 18% of the MSM ever diagnosed with primary HCV.

Our data clearly show that novel DAAs, which arrived in 2014, have entirely replaced PEG-IFN-containing regimens. In addition, the number of individuals living with HIV receiving treatment for HCV has rapidly increased. More than 1,250 individuals have now received, or are currently receiving, treatment with novel DAAs. Overall, 98% of all individuals with sufficient follow-up data to calculate an SVR were found to have been cured. When retreatment was taken into account, the SVR for the last course of treatment was 99%. This high cure rate has reduced the number of individuals with HIV and HCV remaining in need of HCV treatment to 37 in 2022. A recent Dutch study describing barriers to DAA treatment among people with HIV found that the appearing barriers were mostly patient-related,

and included a low frequency of clinical visits and refusal by patients⁴⁹. Overall, a rapid reduction in the prevalence of active HCV infections was achieved, with prevalence in MSM having declined to 0.16% in 2022. Successful treatment of HCV has also prevented onward transmission of HCV, which is reflected in the lower incidence of recent HCV infections in recent years^{22,50}. However, in line with earlier reports^{27,30,44}, HCV reinfection after successful treatment has been observed, but the rate of reinfections has strongly declined over the previous years. Our data showed a decrease in annual HCV testing, while screening for HCV RNA among those at risk of HCV reinfection is an important factor in identifying HCV reinfection. This might have led to an underestimation of the incidence of HCV reinfections.

Six percent of the individuals living with HIV ever in care had HBsAg positive serology. The prevalence of HBsAg positive serostatus has decreased over time from 7.8% in 2001 to 3.9% in 2022 overall, and across all transmission groups, mostly as a result of increased HBV vaccination rates³¹, together with the treatment-asprevention effect of TDF/TAF in ART-treated individuals. Nonetheless, an estimated 25% of all individuals living with HIV have either not been exposed to HBV, or have not been successfully vaccinated, and may remain at risk of acquiring HBV. Since 83% of all individuals still at risk of acquiring HBV infection use an ART regimen that includes TDF/TAF, their risk is probably very low, due to sustained chemoprophylaxis. The remaining 17% of the individuals living with HIV ever registered remain unprotected against HBV, which represents an estimated seven percent of the total population of individuals living with HIV screened for hepatitis B. Very few individuals were tested for HDV infection and, of those who were tested, a small percentage had evidence of active HDV.

Among the individuals living with HIV ever registered by shm, 24% of those with chronic HCV and 16% of those with chronic HBV had evidence of severe chronic liver disease. However, the absolute number of HCC diagnoses has been decreasing since 2011, which can likely be attributed to the use of effective antiviral treatment for HBV and HCV co-infections. Overall, people with chronic HCV or HBV remained at increased risk of having a liver-related cause of death, although this risk has declined substantially since 2012. The overall mortality rate has decreased in individuals with HIV/HCV and HIV/HBV co-infections since 2012, yet the rate remained much higher for PWIDs with HCV or HBV, compared to other transmission groups.

Over half of the individuals ever registered by shm have been tested for anti-HAV antibodies, with testing frequency consistent across calendar years. The percentage of tested individuals found to have anti-HAV antibodies was no different between MSM and other transmission groups, but it was more than double the percentage

found in the general Dutch population⁴⁵. The percentage of people living with HIV with anti-HAV antibodies was higher in older age groups, as would be expected from the general epidemiology of HAV infection⁴¹. Among the individuals diagnosed with HAV, almost half reported having severe symptoms during their infection, while three individuals developed definitive severe chronic liver disease. Nevertheless, no individual died due to HAV infection.

The percentage of individuals reported to have received at least one HAV vaccination was low at 7%; this could be due to incomplete data on HAV vaccination. Despite the high prevalence of anti-HAV antibodies, the fact that only half of the individuals ever registered by shm were tested for anti-HAV immunity, and vaccine uptake was low, could signal that a substantial percentage of individuals remain at risk of HAV infection. Indeed, the majority of HAV diagnoses that were registered in the shm database were observed in HAV-susceptible MSM between 2017 and 2019.

Almost one in 20 individuals ever registered by shm have been screened for HEV. Testing frequency of HEV has increased substantially since 2014, probably due to awareness of HEV infection in Europe and its recognised role in hepatitis and liverrelated disease¹⁸. With increased testing, the number of individuals newly diagnosed with past or current HEV infection, or with acute HEV infection, also increased from 2014 onwards. Nevertheless, the percentage of individuals ever identified as having an HEV infection has remained stable at between 9% and 15% over the past decade. This percentage is similar to figures found in the Dutch general population¹⁷. We were unable to determine whether any liver-related morbidity and mortality, or any extra-hepatic disease was associated with HEV infection.

Recommendations

Continued efforts must be made to ensure that all individuals with HIV are adequately assessed for the presence of HBV and HCV co-infection, or acute HCV (re)infection. In particular, efforts should continue to increase HBV vaccination rates among individuals living with HIV who remain at increased risk of acquiring HBV, particularly those who are not receiving an antiretroviral regimen containing TDF or TAF, and those who previously failed to respond to vaccination⁴⁵. Already, the provision of highly-effective DAA regimens for all known individuals living with HIV and HCV has coincided with reductions in the burden of severe chronic liver disease, hepatocellular carcinoma, and mortality related to liver disease. In addition, these novel regimens have a beneficial impact on the risk of ongoing HCV transmission. Importantly, regular HCV RNA screening among individuals who have been successfully treated for HCV infection and who remain at risk of

reinfection, is recommended to ensure early detection of new HCV infections. This should be combined with behavioural interventions aimed at MSM to prevent HCV reinfection after successful treatment of HCV.

HDV clinical practice guidelines from the European Association for the Study of the Liver suggest that individuals with chronic hepatitis B infection should be tested at least once for HDV³⁶. In the Netherlands, 14% of individuals who ever had HBV had been tested for HDV infection; the reasons for this low percentage need to be clarified. This information could help to establish whether HDV infection in the Netherlands is a substantial contributor to liver-related morbidity and mortality in individuals living with HIV with HBV infection, as found in other settings¹³.

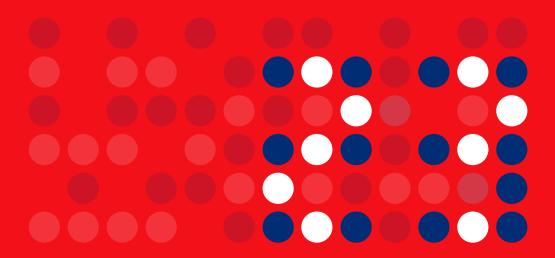
Only half of the individuals ever registered by shm have been screened for HAV and, among those tested, almost two-thirds had anti-HAV antibodies from either vaccination or cleared infection. Even though HAV infection reports have been uncommon over the last two decades, the recent HAV outbreak in MSM⁴¹ brings strong evidence that clinicians need to assess HAV risk and, if present, recommend vaccination. Given that anti-HAV antibodies were less commonly detected in younger individuals, they should be particularly targeted for HAV vaccination.

Studies have suggested that individuals who are immunosuppressed should be tested annually for HEV⁴⁷. However, data from shm and a meta-analysis found no noteworthy increase in HEV prevalence among individuals living with HIV⁴⁸, and only two patients in the shm database were diagnosed with chronic HEV infection. We recommend following current European guidance, which advises that individuals with persistently-elevated transaminase levels should be screened for HEV RNA¹⁸. Further data are needed to determine to what extent liver-related, and non-liver-related, disease occurs as a result of HEV infection in individuals living with HIV.

References

- 1. Hahné SJM, De Melker HE, Kretzschmar M, et al. Prevalence of hepatitis B virus infection in The Netherlands in 1996 and 2007. Epidemiol Infect. 2012;140(8): 1469-1480. doi:10.1017/S095026881100224X
- 2. Van Dijk M, Kracht PAM, Arends JE, et al. Retrieval of Chronic Hepatitis C Patients. A Manifesto for Action to Eliminate Hepatitis C in the Netherlands: The CELINE Project. Neth J Med. 2019;77 (4):131-138.

- 3. Stockdale AJ, Kreuels B, Henrion MYR, et al. The global prevalence of hepatitis D virus infection: Systematic review and meta-analysis. J Hepatol. 2020;73(3): 523-532. doi:10.1016/j.jhep.2020.04.008
- 4. Gaeta GB, Precone DF, Cozzi-Lepri A, Cicconi P, D'Arminio Monforte A. Multiple viralinfections. JHepatol. 2006;44(1Suppl): S108-13. doi:10.1016/j.jhep.2005.11.023
- 5. Heintges T, Wands J. Hepatitis C virus: epidemiology and transmission. Hepatology. 1997;26(3):1-6. doi:10.1002/hep.510260338
- 6. Lok AS. Chronic Hepatitis B. N Engl J Med. 2002;346(22).
- 7. Ikeda K, Saitoh S, Suzuki Y, et al. Disease progression and hepatocellular carcinogenesis in patients with chronic viral hepatitis: A prospective observation of 2215 patients. J Hepatol. 1998; 28(6): 930-938. doi:10.1016/S0168-8278 (98) 80339-5
- 8. Posthouwer D, Makris M, Yee TT, et al. Progression to end-stage liver disease in patients with inherited bleeding disorders and hepatitis C: An international, multicenter cohort study. Blood. 2007;109(9):3667-3671. doi:10.1182/blood-2006-08-038349
- 9. Verna EC. Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis in Patients with HIV. Lancet Gastroenterol Hepatol. 2017 Mar;2(3):211-223. doi: 10.1016/S2468-1253(16)30120-0.
- 10. Arends JE, Lieveld FI, Boeijen LL, et al. Natural history and treatment of HCV/HIV coinfection: Is it time to change paradigms? J Hepatol. 2015;63(5):1254-1262. doi:10.1016/j.jhep.2015.06.034
- 11. Lieveld FI, Smit C, Richter C, et al. Liver decompensation in HIV/Hepatitis B coinfection in the combination antiretroviral therapy era does not seem increased compared to hepatitis B mono-infection. Liver Int. 2019;39(3):470-483. doi:10.1111/liv.14000
- 12. Hughes SA, Wedemeyer H, Harrison PM. Hepatitis delta virus. In: The Lancet. Vol 378. Lancet; 2011:73-85. doi:10.1016/S0140-6736(10)61931-9
- 13. Béguelin C, Moradpour D, Sahli R, et al. Hepatitis delta-associated mortality in HIV/HBV-coinfected patients. J Hepatol. 2017;66(2):297-303. doi:10.1016/j. jhep.2016.10.007
- 14. Lemon SM, Walker CM. Hepatitis avirus and hepatitis E virus: Emerging and re-emerging enterically transmitted hepatitis viruses. Cold Spring Harb Perspect Med. 2019;9(6). doi:10.1101/cshperspect.ao31823
- 15. Dalton HR, Bendall RP, Keane FE, Tedder RS, Ijaz S. Persistent carriage of hepatitis E virus in patients with HIV infection. N Engl J Med. 2009;361(10): 1025-1027. doi:10.1056/NEJMc0903778
- 16. Friesema IHM, Sonder GJB, Petrignani MWF, et al. Spillover of a hepatitis A outbreak among men who have sex with men (MSM) to the general population, the Netherlands, 2017. Eurosurveillance. 2018;23(23). doi:10.2807/1560-7917. ES.2018.23.23.1800265


- 17. Alberts CJ, Schim van der Loeff MF, Sadik S, et al. Hepatitis E virus seroprevalence and determinants in various study populations in the Netherlands. PLoS One. 2018;13(12). doi:10.1371/journal.pone.0208522
- 18. Dalton HR, Kamar N, Baylis SA, Moradpour D, Wedemeyer H, Negro F. EASL Clinical Practice Guidelines on hepatitis E virus infection. J Hepatol. 2018;68(6): 1256-1271. doi:10.1016/j.jhep.2018.03.005
- 19. Rockstroh JK. Acute hepatitis C in HIV-infected individuals recommendations from the NEAT consensus conference. AIDS. 2011;25(4):399-409. doi:10.1097/QAD.obo13e328343443b
- 20. Arends JE, Lambers FAE, van der Meer JTM, et al. Treatment of acute hepatitis C virus infection in HIV+ patients: Dutch recommendations for management. Neth J Med. 2011;69(1):43-49. Accessed August 28, 2018.
- 21. Nederlandse Vereniging van HIV Behandelaren. Richtlijn HIV. Published 2017. http://richtlijnhiv.nvhb.nl/
- 22. Smit C, Boyd A, Rijnders BJA, et al. HCV micro-elimination in individuals with HIV in the Netherlands 4 years after universal access to direct-acting antivirals: a retrospective cohort study. lancet HIV. 2021;8(2):e96-e105. doi:10.1016/S2352-3018(20)30301-5
- 23. European AIDS Clinical Society. Guidelines. Version 8.0, October 2015. English edition. Published online 2015. http://www.eacsociety.org/guidelines/eacs-guidelines/eacs-guidelines.html [Accessed: 15 September 2022]
- 24. Zorg intstituut Nederland. <u>www.zorginstituutnederland.nl</u> [Accessed: 29 October 2021]
- 25. Arends JE, van der Meer JTM, Posthouwer D, et al. Favourable SVR12 rates with boceprevir or telaprevir triple therapy in HIV/HCV coinfected patients. Neth J Med. 2015;73(7):324-330.
- 26. van Sighem AI, Boender TS, Wit FWNM, Smit C, Matser A, Reiss P. Monitoring Report 2016. Human Immunodeficiency Virus (HIV) Infection in the Netherlands. Stichting HIV Monitoring; 2016.
- 27. Lambers FAE, Prins M, Thomas X, et al. Alarming incidence of hepatitis C virus re-infection after treatment of sexually acquired acute hepatitis C virus infection in HIV-infected MSM. AIDS. 2011;25(17): F21-7. doi:10.1097/QAD. obo13e32834bac44
- 29. Ingiliz P, Krznaric I, Stellbrink HJ, et al. Multiple hepatitis C virus (HCV) reinfections in HIV-positive men who have sex with men: no influence of HCV genotype switch or interleukin-28B genotype on spontaneous clearance. HIV Med. 2014;15(6):355-361. doi:10.1111/hiv.12127

- 30. Martin TCS, Martin NK, Hickman M, et al. Hepatitis C virus reinfection incidence and treatment outcome among HIV-positive MSM. AIDS. 2013;27(16):2551-2557. doi:10.1097/QAD.ob013e32836381cc
- 31. van Rijckevorsel G, Whelan J, Kretzschmar M, et al. Targeted vaccination programme successful in reducing acute hepatitis B in men having sex with men in Amsterdam, the Netherlands. J Hepatol. 2013;59(6):1177-1183. doi:10.1016/j.jhep.2013.08.002
- 32. Heuft MM, Houba SM, Van Den Berk GEL, et al. Protective effect of hepatitis B virus-active antiretroviral therapy against primary hepatitis B virus infection. AIDS. 2014;28(7):999-1005. doi:10.1097/QAD.00000000000180
- 33. Kim HN, Newcomb CW, Carbonari DM, et al. Risk of HCC With Hepatitis B Viremia Among HIV/HBV-Coinfected Persons in North America. Hepatology. 2021;74(3):1190-1202. doi:10.1002/hep.31839
- 34. Dezanet LNC, Kassime R, Miailhes P, et al. Effect of Viral Replication and Liver Fibrosis on All-Cause Mortality in Human Immunodeficiency Virus-Hepatitis B Virus-Coinfected Individuals: A Retrospective Analysis of a 15-Year Longitudinal Cohort. Clin Infect Dis. 2022;74(6):1012-1021. doi:10.1093/cid/ciab594
- 35. Ratcliffe L, Beadsworth MB, Pennell A, Phillips M, Vilar FJ. Managing hepatitis B/HIV co-infected: adding entecavir to truvada (tenofovir disoproxil/emtricitabine) experienced patients. AIDS. 2011;25(8):1051-1056. doi:10.1097/QAD.obo13e328345ef5e
- 36. EASL. European Association for the Study of the Liver. EASL Clinical Practice Guidelines on hepatitis delta virus. J Hepatol. 2023 Aug;79(2):433-460. doi: 10.1016/j.jhep.2023.05.001. Epub 2023 Jun 24.PMID: 37364791
- 37. Sharma SK, Saini N, Chwla Y. Hepatitis B virus: inactive carriers. Virol J. 2005;2:82. doi:10.1186/1743-422X-2-82
- 38. Boyd A, Dezanet LNC, Lacombe K. Functional Cure of Hepatitis B Virus Infection in Individuals With HIV-Coinfection: A Literature Review. Viruses. 2021;13(7):1341. doi:10.3390/v13071341
- 39. Quirk E, Graham H, Liu C, Rhee M, Piontkowsky D, Szwarcberg J. Reports of viral hepatitis B and C in HIV patients participating in clinical trials of elvitegravir/cobicistat/tenofovir DF/emtricitabine and cobicistat-boosted atazanavir plus tenofovir DF/emtricitabine. Antivir Ther. 2013;1 Suppl 38:A63.
- 40. Heuft MM, Houba SM, van den Berk GEL, et al. Protective effect of hepatitis B virus-active antiretroviral therapy against primary hepatitis B virus infection. AIDS. 2014;28(7):999-1005. doi:10.1097/QAD.00000000000180
- 41. Jacobsen KH, Wiersma ST. Hepatitis A virus seroprevalence by age and world region, 1990 and 2005. Vaccine. 2010;28(41):6653-6657. doi:10.1016/j. vaccine.2010.08.037

- 42. Ndumbi P, Freidl GS, Williams CJ, et al. Hepatitis a outbreak disproportionately affecting men who have sex with men (MSM) in the european union and european economic area, june 2016 to may 2017. Eurosurveillance. 2018;23(33): 1-12. doi:10.2807/1560-7917.ES.2018.23.33.1700641
- 43. LCI. No Title. <u>www.lci.rivm.nl/richtlijnen/hepatitis-a#immunisatie</u> [Accessed: 29 October 2021]
- 44. Newsum AM, Matser A, Schinkel J, et al. Incidence of HCV Reinfection Among HIV-Positive MSM and Its Association With Sexual Risk Behavior: A Longitudinal Analysis. Clin Infect Dis. 2021;73(3):460-467. doi:10.1093/cid/ciaa645
- 45. Verhoef L, Boot HJ, Koopmans M, et al. Changing risk profile of hepatitis A in the Netherlands: A comparison of seroprevalence in 1995-1996 and 2006-2007. Epidemiol Infect. 2011;139(8):1172-1180. doi:10.1017/S0950268810003043
- 46. Machiels JD, Braam EE, van Bentum P, et al. Vaccination with Fendrix of prior nonresponding patients with HIV has a high success rate. AIDS. 2019;33(3): 503-507. doi:10.1097/QAD.00000000000005
- 47. Wallace SJ, Webb GW, Madden RG, et al. Investigation of liver dysfunction: Who should we test for hepatitis E? Eur J Gastroenterol Hepatol. 2017;29(2): 215-220. doi:10.1097/MEG.000000000000781
- 48. Lopez-Lopez P, Frias M, Camacho A, Rivero A, Rivero-Juarez A. Human immuno-deficiency virus infected patients are not at higher risk for hepatitis e virus infection: A systematic review and meta-analysis. Microorganisms. 2019;7(12). doi:10.3390/microorganisms7120618
- 49. Isfordink CJ, Smit C, Boyd A, de Regt MJA, Rijnders BJA, van Crevel R, Ackens RP, Reiss P, Arends JE, van der Valk M; ATHENA observational cohort. Low hepatitis C virus-viremia prevalence yet continued barriers to direct-acting antiviral treatment in people living with HIV in the Netherlands. AIDS. 2022 May 1;36(6):773-783. doi: 10.1097/QAD.000000000003159. Epub 2022 Jan 6.PMID: 34999607
- 50. van Santen DK, Sacks-Davis R, Stewart A, Boyd A, Young J, van der Valk M, Smit C, Rauch A, Braun DL, Jarrin I, Berenguer J, Lazarus JV, Lacombe K, Requena MB, Wittkop L, Leleux O, Salmon D, Bonnet F, Matthews G, Doyle JS, Spelman T, Klein MB, Prins M, Asselin J, Stoové MA, Hellard M; InCHEHC study group.

 Treatment as prevention effect of direct-acting antivirals on primary hepatitis C virus incidence: Findings from a multinational cohort between 2010 and 2019. EClinicalMedicine. 2022 Dec 30;56:101810. doi: 10.1016/j.eclinm.2022.101810. eCollection 2023 Feb.PMID: 36618902

