Long-term CD4 cell count improvement in HIV-1 infected individuals with long-term sustained virological suppression on cART

Luuk Gras1, Anouk Kesselring1, Steven van Lelyveld2, Jan M. Prins3, Peter Reiss4, Frank de Wolf4 and the ATHENA national observational HIV cohort
1Bichir HIV Monitoring, Amsterdam, the Netherlands; 2Academical Medical Centre of the University of Amsterdam, Amsterdam, the Netherlands; *Imperial College School of Medicine, London, U.K.

Background
- Restoration of CD4 cell count levels towards normal in cART-treated HIV-infected individuals may not be feasible when CD4 cell counts at the start of cART are low
- Previously, we investigated changes in CD4 cell counts in patients on continuous cART and with viral suppression <500 copies/ml.
- Objective: Extending these observations to patients with suppressed viral load below 50 copies/ml for a period of up to 8 years.

Methods
HIV-1 infected patients selected from the national observational ATHENA cohort who were:
- ART-naive and >16 years of age at start of cART
- Virologically suppressed to below 50 copies/ml within 9 months after start.

Outcome:
- CD4 cell counts between start of cART and earliest of following events: end of follow-up, cART interruption >2 weeks, start of chemotherapy or peg-interferon, first of 2 consecutive plasma viral load measurements >50 copies/ml.
- Statistical analysis:
- CD4 cell counts were longitudinally modelled using mixed effects models.
- The association between CD4 slopes, CD4 cell counts at the start of cART (<50, 50-200, 200-350, 350-500, and ≥500 cells/mm³) and gender, HIV RNA and age at cART initiation, transmission risk group, HBV (HBsAg-positive) and HCV (HCV RNA, if not available HCV Ab) co-infection and region of origin were investigated.
- A random intercept and 3 random slopes (0-6, 6-24, and ≥24 months) for each patient was included.

Results

- Figure: Median CD4 cell counts during virological successful continuous cART according to CD4 cell count at start. At least 5 patients remaining in follow-up.

<table>
<thead>
<tr>
<th>Region of origin</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Europe/N-Africa</td>
<td>383 (7)</td>
<td>436 (8)</td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
<td>576 (10)</td>
<td>614 (8)</td>
</tr>
<tr>
<td>Other</td>
<td>376 (7)</td>
<td>244 (4)</td>
</tr>
</tbody>
</table>

Table 1. Demographic and clinical characteristics at the start of cART.

<table>
<thead>
<tr>
<th>Mean (95% CI) differences in annual CD4 cell changes after starting cART</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-6 m</td>
</tr>
<tr>
<td>CD4 cell count</td>
</tr>
<tr>
<td><50</td>
</tr>
<tr>
<td>50-200</td>
</tr>
<tr>
<td>200-350 (ref)</td>
</tr>
<tr>
<td>350-500</td>
</tr>
<tr>
<td>≥500</td>
</tr>
<tr>
<td>Median (IQR)</td>
</tr>
</tbody>
</table>

Table 2. Differences in annual changes in CD4 cell count during virological successful continuous cART. West: Western Europe and North America, SSA: Sub-Saharan Africa.

Conclusions
- Eight years of sustained virological suppression <50 copies/ml on cART, resulted in median CD4 cell counts levels around 800 cells/mm³ when cART was initiated ≥350 CD4 cells/mm³.
- CD4 cell count increases between 0-8 years were smaller in patients ≥50 years.